Drug-Drug Interaction Prediction with Wasserstein Adversarial Autoencoder-based Knowledge Graph Embeddings release_zwmlp2vjvzeonp33hqy2veilwi

by Yuanfei Dai, Chenhao Guo, Wenzhong Guo, Carsten Eickhoff

Released as a article .

2020  

Abstract

Interaction between pharmacological agents can trigger unexpected adverse events. Capturing richer and more comprehensive information about drug-drug interactions (DDI) is one of the key tasks in public health and drug development. Recently, several knowledge graph embedding approaches have received increasing attention in the DDI domain due to their capability of projecting drugs and interactions into a low-dimensional feature space for predicting links and classifying triplets. However, existing methods only apply a uniformly random mode to construct negative samples. As a consequence, these samples are often too simplistic to train an effective model. In this paper, we propose a new knowledge graph embedding framework by introducing adversarial autoencoders (AAE) based on Wasserstein distances and Gumbel-Softmax relaxation for drug-drug interactions tasks. In our framework, the autoencoder is employed to generate high-quality negative samples and the hidden vector of the autoencoder is regarded as a plausible drug candidate. Afterwards, the discriminator learns the embeddings of drugs and interactions based on both positive and negative triplets. Meanwhile, in order to solve vanishing gradient problems on the discrete representation--an inherent flaw in traditional generative models--we utilize the Gumbel-Softmax relaxation and the Wasserstein distance to train the embedding model steadily. We empirically evaluate our method on two tasks, link prediction and DDI classification. The experimental results show that our framework can attain significant improvements and noticeably outperform competitive baselines.
In text/plain format

Archived Files and Locations

application/pdf  691.3 kB
file_dblwyi6dkzfcdjfriln2lwfesm
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article
Stage   submitted
Date   2020-10-16
Version   v2
Language   en ?
arXiv  2004.07341v2
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 5db645b6-45cd-4c4e-8ea1-ef6d5491ec65
API URL: JSON