LazyDAgger: Reducing Context Switching in Interactive Imitation Learning release_zmnbfjmvybc37a5fl55cdbfs2u

by Ryan Hoque, Ashwin Balakrishna, Carl Putterman, Michael Luo, Daniel S. Brown, Daniel Seita, Brijen Thananjeyan, Ellen Novoseller, Ken Goldberg

Released as a article .

2021  

Abstract

Corrective interventions while a robot is learning to automate a task provide an intuitive method for a human supervisor to assist the robot and convey information about desired behavior. However, these interventions can impose significant burden on a human supervisor, as each intervention interrupts other work the human is doing, incurs latency with each context switch between supervisor and autonomous control, and requires time to perform. We present LazyDAgger, which extends the interactive imitation learning (IL) algorithm SafeDAgger to reduce context switches between supervisor and autonomous control. We find that LazyDAgger improves the performance and robustness of the learned policy during both learning and execution while limiting burden on the supervisor. Simulation experiments suggest that LazyDAgger can reduce context switches by an average of 60% over SafeDAgger on 3 continuous control tasks while maintaining state-of-the-art policy performance. In physical fabric manipulation experiments with an ABB YuMi robot, LazyDAgger reduces context switches by 60% while achieving a 60% higher success rate than SafeDAgger at execution time.
In text/plain format

Archived Content

There are no accessible files associated with this release. You could check other releases for this work for an accessible version.

"Dark" Preservation Only
Save Paper Now!

Know of a fulltext copy of on the public web? Submit a URL and we will archive it

Type  article
Stage   submitted
Date   2021-03-31
Version   v1
Language   en ?
arXiv  2104.00053v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: f27177e1-cfab-442c-b3ec-d1b62cc553a3
API URL: JSON