Unsupervised Discretization by Two-dimensional MDL-based Histogram release_zi66e6wxtfb4fciyhcn5ajfggu

by Lincen Yang, Mitra Baratchi, Matthijs van Leeuwen

Released as a article .

2020  

Abstract

Unsupervised discretization is a crucial step in many knowledge discovery tasks. The state-of-the-art method for one-dimensional data infers locally adaptive histograms using the minimum description length (MDL) principle, but the multi-dimensional case is far less studied: current methods consider the dimensions one at a time (if not independently), which result in discretizations based on rectangular cells of adaptive size. Unfortunately, this approach is unable to adequately characterize dependencies among dimensions and/or results in discretizations consisting of more cells (or bins) than is desirable. To address this problem, we propose an expressive model class that allows for far more flexible partitions of two-dimensional data. We extend the state of the art for the one-dimensional case to obtain a model selection problem based on the normalised maximum likelihood, a form of refined MDL. As the flexibility of our model class comes at the cost of a vast search space, we introduce a heuristic algorithm, named PALM, which partitions each dimension alternately and then merges neighbouring regions, all using the MDL principle. Experiments on synthetic data show that PALM 1) accurately reveals ground truth partitions that are within the model class (i.e., the search space), given a large enough sample size; 2) approximates well a wide range of partitions outside the model class; 3) converges, in contrast to its closest competitor IPD; and 4) is self-adaptive with regard to both sample size and local density structure of the data despite being parameter-free. Finally, we apply our algorithm to two geographic datasets to demonstrate its real-world potential.
In text/plain format

Archived Content

There are no accessible files associated with this release. You could check other releases for this work for an accessible version.

"Dark" Preservation Only
Save Paper Now!

Know of a fulltext copy of on the public web? Submit a URL and we will archive it

Type  article
Stage   submitted
Date   2020-10-28
Version   v2
Language   en ?
arXiv  2006.01893v2
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: e9db6b8f-2f00-4ed2-87c7-d3af0fc511a7
API URL: JSON