Optimal Multi-Objective Capacity Enhancement and Energy Efficient HetNet Planning and Deployment Approach: The Case of Addis Ababa, Ethiopia release_yweb3zfpunbmnly665mahcfzcq

by Abayneh Habtamu

Entity Metadata (schema)

abstracts[] {'sha1': 'ad8e71abc2de45facca38b000d1231445531948b', 'content': "Following growth in infrastructure, number of subscribers and availability of smart devices and applications, the aggregate cellular data traffic in Addis Ababa city's cellular network is increasing exponentially. Moreover, traffic growth follows non-uniform distribution both in space and time. To accommodate this non-uniformly growing data traffic, ethio telecom, for now, the sole telecom service provider in the city, deploy single-layer homogeneous macro base stations (MBSs). Macro-cell densification has been used to increase capacity of the radio access network (RAN). However, excess densification increases the RAN energy consumption, which is becoming a concern for cellular network operators like ethio telecom. Deploying small cells overlaid with macro BSs, named as the heterogeneous network (HetNet), is an energy-efficient (EE) approach capable of meeting the high capacity demand and also keeps network deployment costs low. Many studies have analyzed the HetNet planning and deployment scenario. However, user usage scenarios and their mobility pattern based on realistic data are not considered for the selection of initial small cell candidate locations. Their results differ from one another depending on the environment, cell size, data set, and technology, or the methodology on which the research is made. This research investigates a genetic algorithm (GA) based multi-objective optimization based on system capacity and EE maximization to provide a set of optimal solutions for HetNet selection. In doing so, based on a dataset collected from Addis Ababa cellular network, existing macro BSs data traffic, user usage scenarios, and spatial data traffic demand distribution are generated to identify hotspot areas, and are given as input parameters for the GA for optimal small cell selection. Then, layered planning and deployment is carried out in an interference-limited LongTerm Evolution (LTE) network based on the target requirement. Finally, performance gain of the optimized layered approach is evaluated with syst [...]", 'mimetype': 'text/plain', 'lang': 'en'}
container
container_id
contribs[] {'index': 0, 'creator_id': None, 'creator': None, 'raw_name': 'Abayneh Habtamu', 'given_name': 'Abayneh', 'surname': 'Habtamu', 'role': 'author', 'raw_affiliation': 'Addis Ababa University', 'extra': None}
ext_ids {'doi': '10.20372/nadre/4853', 'wikidata_qid': None, 'isbn13': None, 'pmid': None, 'pmcid': None, 'core': None, 'arxiv': None, 'jstor': None, 'ark': None, 'mag': None, 'doaj': None, 'dblp': None, 'oai': None, 'hdl': None}
files[] {'state': 'active', 'ident': 'inzmn7226bgxzk2zn4lkyvarzu', 'revision': '9af3a0b8-ad4e-418e-8cc4-c8af10c8edf0', 'redirect': None, 'extra': None, 'edit_extra': None, 'size': 3109993, 'md5': '80e9b12836269bc4d1929d68d330201a', 'sha1': '186c91d87656ed324538ca7ccb82e05620ad67a1', 'sha256': '42bac0468cd83f8a96f1f623d0d64b5ba6fe537f7c10c8fd66eb89e7aeb02f45', 'urls': [{'url': 'https://nadre.ethernet.edu.et/record/4854/files/HabtamuAbayneh.pdf', 'rel': 'publisher'}, {'url': 'https://web.archive.org/web/20200508020748/https://nadre.ethernet.edu.et/record/4854/files/HabtamuAbayneh.pdf', 'rel': 'webarchive'}], 'mimetype': 'application/pdf', 'content_scope': None, 'release_ids': ['yweb3zfpunbmnly665mahcfzcq'], 'releases': None}
filesets []
issue
language
license_slug
number
original_title
pages
publisher National Academic Digital Repository of Ethiopia
refs []
release_date 2019-12-01
release_stage published
release_type article-journal
release_year 2019
subtitle
title Optimal Multi-Objective Capacity Enhancement and Energy Efficient HetNet Planning and Deployment Approach: The Case of Addis Ababa, Ethiopia
version
volume
webcaptures []
withdrawn_date
withdrawn_status
withdrawn_year
work_id vai54jcrjrcofbt3y7p6kih23q
As JSON via API

Extra Metadata (raw JSON)

datacite.license [{'rights': 'Creative Commons Attribution', 'rightsUri': 'http://www.opendefinition.org/licenses/cc-by'}, {'rights': 'Open Access', 'rightsUri': 'info:eu-repo/semantics/openAccess'}]
datacite.metadataVersion 1
datacite.relations [{'relatedIdentifier': '978-963-313-151-0', 'relatedIdentifierType': 'ISBN', 'relationType': 'IsPartOf'}, {'relatedIdentifier': '10.20372/nadre/4854', 'relatedIdentifierType': 'DOI', 'relationType': 'HasVersion'}, {'relatedIdentifier': 'https://nadre.ethernet.edu.et/communities/aau', 'relatedIdentifierType': 'URL', 'relationType': 'IsPartOf'}, {'relatedIdentifier': 'https://nadre.ethernet.edu.et/communities/nadre', 'relatedIdentifierType': 'URL', 'relationType': 'IsPartOf'}]
datacite.resourceType Thesis
datacite.resourceTypeGeneral Text
release_month 12