Parvalbumin-Positive Inhibitory Interneurons Oppose Propagation But Favor Generation of Focal Epileptiform Activity release_yq4hhmnszbhdfcgqra4axbmdzq

by M. Sessolo, I. Marcon, S. Bovetti, G. Losi, M. Cammarota, G. M. Ratto, T. Fellin, G. Carmignoto

Published in Journal of Neuroscience by Society for Neuroscience.

2015   Volume 35, Issue 26, p9544-9557

Abstract

Parvalbumin (Pv)-positive inhibitory interneurons effectively control network excitability, and their optogenetic activation has been reported to block epileptic seizures. An intense activity in GABAergic interneurons, including Pv interneurons, before seizures has been described in different experimental models of epilepsy, raising the hypothesis that an increased GABAergic inhibitory signal may, under certain conditions, initiate seizures. It is therefore unclear whether the activity of Pv interneurons enhances or opposes epileptiform activities. Here we use a mouse cortical slice model of focal epilepsy in which the epileptogenic focus can be identified and the role of Pv interneurons in the generation and propagation of seizure-like ictal events is accurately analyzed by a combination of optogenetic, electrophysiological, and imaging techniques. We found that a selective activation of Pv interneurons at the focus failed to block ictal generation and induced postinhibitory rebound spiking in pyramidal neurons, enhancing neuronal synchrony and promoting ictal generation. In contrast, a selective activation of Pv interneurons distant from the focus blocked ictal propagation and shortened ictal duration at the focus. We revealed that the reduced ictal duration was a direct consequence of the ictal propagation block, probably by preventing newly generated afterdischarges to travel backwards to the original focus of ictal initiation. Similar results were obtained upon individual Pv interneuron activation by intracellular depolarizing current pulses. The functional dichotomy of Pv interneurons here described opens new perspectives to our understanding of how local inhibitory circuits govern generation and spread of focal epileptiform activities.
In text/plain format

Archived Files and Locations

application/pdf  3.4 MB
file_clrev3f3uzghzanya6otswyyqe
web.archive.org (webarchive)
www.jneurosci.org (web)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2015-07-01
Language   en ?
Journal Metadata
Not in DOAJ
In Keepers Registry
ISSN-L:  0270-6474
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 0b477d1d-231a-4b45-9a87-51c31761604a
API URL: JSON