Pharmacokinetics and in vitro/in vivo antitumor efficacy of aptamer-targeted Ecoflex<sup>®</sup> nanoparticles for docetaxel delivery in ovarian cancer release_xvd6a2zhmvdmlmbamagt7jaucy

by Erfaneh Ghassami, Jaleh, Ali Jahanian-Najafabadi, Mohsen Minaiyan, Parvin Rajabi, Effat Hayati

Published in International Journal of Nanomedicine by Dove Medical Press Ltd..

2018   Volume Volume 13, p493-504

Abstract

Epithelixal ovarian cancer is the fourth cause of cancer death in developed countries with 77% of ovarian cancer cases diagnosed with regional or distant metastasis, with poor survival rates. Docetaxel (DTX) is a well-known anticancer agent, with clinically proven efficacy in several malignancies, including ovarian cancer. However, the adverse effects caused by the active ingredient or currently marketed formulations could even deprive the patient of the advantages of treatment. Therefore, in the current study, polymeric nanoparticles (NPs) equipped with aptamer molecules as targeting agents were proposed to minimize the adverse effects and enhance the antitumor efficacy through directing the drug cargo toward its site of action. Electrospraying technique was implemented to fabricate poly (butylene adipate-co-butylene terephthalate) (Ecoflex®) NPs loaded with DTX (DTX-NPs). Afterward, aptamer molecules were added to the DTX-NPs, which bound via covalent bonds (Apt-DTX-NPs). The particle size, size distribution, zeta potential, entrapment efficiency, and release profile of the NPs were characterized. Using MTT assay and flow-cytometry analysis, the in vitro cytotoxicity and cellular uptake of the NPs were compared to those of the free drug. Following intravenous administration of Taxotere®, DTX-NPs, and Apt-DTX-NPs (at an equivalent dose of 5 mg/kg of DTX), pharmacokinetic parameters and antitumor efficacy were compared in female Balb/c and HER-2-overexpressing tumor-bearing B6 athymic mice, respectively. The obtained results demonstrated significantly enhanced in vitro cytotoxicity and cellular uptake of Apt-DTX-NPs in a HER-2-overexpressing cell line, comparing to DTX-NPs and the free drug. The results of in vivo studies indicated significant increment in pharmacokinetic parameters including the area under the plasma concentration-time curve, mean residence time, and elimination half-life. Significant increment in antitumor efficacy was also observed, probably due to the targeted delivery of DTX to the tumor site and enhanced cellular uptake as evaluated in the aforementioned tests. Hence, the proposed drug delivery system could be considered as an appropriate potential substitute for currently marketed DTX formulations.
In text/plain format

Archived Files and Locations

application/pdf  1.6 MB
file_vex6miexcfhjrjjsfnpg7vblxy
www.dovepress.com (web)
web.archive.org (webarchive)
application/pdf  1.5 MB
file_bstfoziskfhxpjyxlwt5l6a32i
web.archive.org (webarchive)
pdfs.semanticscholar.org (aggregator)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2018-01-23
Language   en ?
DOI  10.2147/ijn.s152474
PubMed  29416331
PMC  PMC5789074
Wikidata  Q50054796
Journal Metadata
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:  1176-9114
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 88288882-5e87-4388-b5ff-5f15761356c7
API URL: JSON