The Local LinearM-Estimation with Missing Response Data release_xkrwossrm5dxhm6wg25omcb7jy

by Shuanghua Luo, Cheng-Yi Zhang, Fengmin Xu

Published in Journal of Applied Mathematics by Hindawi Limited.

2014   Volume 2014, p1-10

Abstract

This paper studies the nonparametric regressive function with missing response data. Three local linear<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:math>-estimators with the robustness of local linear regression smoothers are presented such that they have the same asymptotic normality and consistency. Then finite-sample performance is examined via simulation studies. Simulations demonstrate that the complete-case data<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:math>-estimator is not superior to the other two local linear<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:math>-estimators.
In application/xml+jats format

Archived Files and Locations

application/pdf  2.1 MB
file_qxhvmmujuvcbfktifaykgbuhwq
web.archive.org (webarchive)
pdfs.semanticscholar.org (aggregator)
application/pdf  687.3 kB
file_zljnfxrv6rhi7izixee54k5oq4
projecteuclid.org (web)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Year   2014
Language   en ?
Journal Metadata
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:  1110-757X
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: d807a391-d34f-4e3a-87d6-e75f1a3636e2
API URL: JSON