Cross-Referencing Method for Scalable Public Blockchain release_x3oiboq53ve5jjh6wq5uunahx4

by Takaaki Yanagihara, Akihiro Fujihara

Released as a article .

2021  

Abstract

We previously proposed a cross-referencing method for enabling multiple peer-to-peer network domains to manage their own public blockchains and periodically exchanging the state of the latest fixed block in the blockchain with hysteresis signatures among all the domains via an upper network layer. In this study, we evaluated the effectiveness of our method from three theoretical viewpoints: decentralization, scalability, and tamper resistance. We show that the performance of the entire system can be improved because transactions and blocks are distributed only inside the domain. We argue that the transaction processing capacity will increase to 56,000 transactions per second, which is as much as that of a VISA credit card system. The capacity is also evaluated by multiplying the number of domains by the average reduction in transaction-processing time due to the increase in block size and reduction in the block-generation-time interval by domain partition. For tamper resistance, each domain has evidence of the hysteresis signatures of the other domains in the blockchain. We introduce two types of tamper-resistance-improvement ratios as evaluation measures of tamper resistance for a blockchain and theoretically explain how tamper resistance is improved using our cross-referencing method. With our method, tamper resistance improves as the number of domains increases. The proposed system of 1,000 domains are 3-10 times more tamper-resistant than that of 100 domains, and the capacity is 10 times higher. We conclude that our method enables a more scalable and tamper-resistant public blockchain balanced with decentralization.
In text/plain format

Archived Files and Locations

application/pdf  820.2 kB
file_olvrmxd2jfe6vedq2zy7zp222e
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article
Stage   submitted
Date   2021-07-27
Version   v1
Language   en ?
arXiv  2107.12981v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 431c9d9c-59e5-4b3c-8bbe-a3bb0dcd9e26
API URL: JSON