Synthesized Trust Learning from Limited Human Feedback for Human-Load-Reduced Multi-Robot Deployments release_wadcn7smqrbapcxu62oimqbviq

by Yijiang Pang, Chao Huang, Rui Liu

Released as a article .

2021  

Abstract

Human multi-robot system (MRS) collaboration is demonstrating potentials in wide application scenarios due to the integration of human cognitive skills and a robot team's powerful capability introduced by its multi-member structure. However, due to limited human cognitive capability, a human cannot simultaneously monitor multiple robots and identify the abnormal ones, largely limiting the efficiency of the human-MRS collaboration. There is an urgent need to proactively reduce unnecessary human engagements and further reduce human cognitive loads. Human trust in human MRS collaboration reveals human expectations on robot performance. Based on trust estimation, the work between a human and MRS will be reallocated that an MRS will self-monitor and only request human guidance in critical situations. Inspired by that, a novel Synthesized Trust Learning (STL) method was developed to model human trust in the collaboration. STL explores two aspects of human trust (trust level and trust preference), meanwhile accelerates the convergence speed by integrating active learning to reduce human workload. To validate the effectiveness of the method, tasks "searching victims in the context of city rescue" were designed in an open-world simulation environment, and a user study with 10 volunteers was conducted to generate real human trust feedback. The results showed that by maximally utilizing human feedback, the STL achieved higher accuracy in trust modeling with a few human feedback, effectively reducing human interventions needed for modeling an accurate trust, therefore reducing human cognitive load in the collaboration.
In text/plain format

Archived Files and Locations

application/pdf  2.4 MB
file_m6la3p2xbbc73lhclraeljosca
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article
Stage   submitted
Date   2021-07-13
Version   v2
Language   en ?
arXiv  2104.03151v2
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 8fa683fe-f86e-4adf-ae9e-f1699f403c53
API URL: JSON