An Exhaustive Survey on P4 Programmable Data Plane Switches: Taxonomy, Applications, Challenges, and Future Trends release_w3icorcwarbglhonx73ndxofsm

by Elie F. Kfoury, Jorge Crichigno, Elias Bou-Harb

Released as a article .

2021  

Abstract

Traditionally, the data plane has been designed with fixed functions to forward packets using a small set of protocols. This closed-design paradigm has limited the capability of the switches to proprietary implementations which are hardcoded by vendors, inducing a lengthy, costly, and inflexible process. Recently, data plane programmability has attracted significant attention from both the research community and the industry, permitting operators and programmers in general to run customized packet processing function. This open-design paradigm is paving the way for an unprecedented wave of innovation and experimentation by reducing the time of designing, testing, and adopting new protocols; enabling a customized, top-down approach to develop network applications; providing granular visibility of packet events defined by the programmer; reducing complexity and enhancing resource utilization of the programmable switches; and drastically improving the performance of applications that are offloaded to the data plane. Despite the impressive advantages of programmable data plane switches and their importance in modern networks, the literature has been missing a comprehensive survey. To this end, this paper provides a background encompassing an overview of the evolution of networks from legacy to programmable, describing the essentials of programmable switches, and summarizing their advantages over Software-defined Networking (SDN) and legacy devices. The paper then presents a unique, comprehensive taxonomy of applications developed with P4 language; surveying, classifying, and analyzing more than 150 articles; discussing challenges and considerations; and presenting future perspectives and open research issues.
In text/plain format

Archived Content

There are no accessible files associated with this release. You could check other releases for this work for an accessible version.

"Dark" Preservation Only
Save Paper Now!

Know of a fulltext copy of on the public web? Submit a URL and we will archive it

Type  article
Stage   submitted
Date   2021-02-01
Version   v1
Language   en ?
arXiv  2102.00643v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: ca3b5dd2-d2d0-4417-b15b-5f1c1032010c
API URL: JSON