Coal Mine Gas Safety Evaluation Based on Adaptive Weighted Least Squares Support Vector Machine and Improved Dempster–Shafer Evidence Theory release_v2as7ujlejhd7bzzlsqcexdwvi

by Zhenming Sun, Dong Li

Published in Discrete Dynamics in Nature and Society by Hindawi Limited.

2020   Volume 2020, p1-12


Gas safety evaluation has always been vital for coal mine safety management. To enhance the accuracy of coal mine gas safety evaluation results, a new gas safety evaluation model is proposed based on the adaptive weighted least squares support vector machine (AWLS-SVM) and improved Dempster–Shafer (D-S) evidence theory. The AWLS-SVM is used to calculate the sensor value at the evaluation time, and the D-S evidence theory is used to evaluate the safety status. First, the sensor data of gas concentration, wind speed, dust, and temperature were obtained from the coal mine safety monitoring system, and the prediction results of sensor data are obtained using the AWLS-SVM; hence, the prediction results would be the input of the evaluation model. Second, because the basic probability assignment (BPA) function is the basis of D-S evidence theory calculation, the BPA function of each sensor is determined using the posterior probability modeling method, and the similarity is introduced for optimization. Then, regarding the problem of fusion failure in D-S evidence theory when fusing high-conflict evidence, using the idea of assigning weights, the importance of each evidence is allocated to weaken the effect of conflicting evidence on the evaluation results. To prevent the loss of the effective information of the original evidence followed by modifying the evidence source, a conflict allocation coefficient is introduced based on fusion rules. Ultimately, taking Qing Gang Ping coal mine located in Shaanxi province as the study area, a gas safety evaluation example analysis is performed for the assessment model developed in this paper. The results indicate that the similarity measures can effectively eliminate high-conflict evidence sources. Moreover, the accuracy of D-S evidence theory based on enhanced fusion rules is improved compared to the D-S evidence theory in terms of the modified evidence sources and the original D-S evidence theory. Since more sensors are fused, the evaluation results have higher accuracy. Furthermore, the multisensor data evaluation results are enhanced compared to the single sensor evaluation outcomes.
In application/xml+jats format

Archived Files and Locations

application/pdf  1.4 MB
file_wbjgrvvdvjcxljlvfoxjbcndhu (publisher) (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2020-10-20
Language   en ?
Container Metadata
Open Access Publication
In Keepers Registry
ISSN-L:  1026-0226
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 94b6a318-3310-4bc6-9f0d-025ca106cd6b