Service is in read-only mode for maintenance. See gitter chat for updates.

­­A convolutional neural network-based system to detect malignant findings in FDG PET/CT examinations release_tc5fwi65drftfoyrl3bzoqowze

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 32 references (in 173ms)
[b0]

via grobid
Positron Emission Tomography in Cancer Research and Treatment
Mark Mandelkern, Jonathan Raines
2002   Technology in Cancer Research and Treatment
doi:10.1177/153303460200100603  pmid:12625770 
[b1]

via grobid
Nabi HA, Zubeldia JM. Clinical applications of (18)F-FDG in oncology. J Nucl Med Technol. 2002;30:1-3. https://www.ncbi.nlm.nih.gov/pubmed/11948260. 14
[b2]

via grobid
Kinuya K, Nishiyama Y, Kato R, Kayano D, Sato S, Tashiro M, et al. The 8th survey report on national nuclear medicine clinical practice in Japan. Radioisotopes. 2018;67:339-87.
[b3]

via grobid
Computer-Aided Diagnosis Based on Convolutional Neural Network System for Colorectal Polyp Classification: Preliminary Experience
Yoriaki Komeda, Hisashi Handa, Tomohiro Watanabe, Takanobu Nomura, Misaki Kitahashi, Toshiharu Sakurai, Ayana Okamoto, Tomohiro Minami (+ more)
2017   Oncology
doi:10.1159/000481227  pmid:29258081 
web.archive.org [PDF]
[b4]

via grobid
Deep Learning in Medical Image Analysis
Dinggang Shen, Guorong Wu, Heung-Il Suk
2017   Annual Review of Biomedical Engineering
doi:10.1146/annurev-bioeng-071516-044442  pmcid:PMC5479722  pmid:28301734 
web.archive.org [PDF]
[b5]

via grobid
From Images to Actions: Opportunities for Artificial Intelligence in Radiology
Charles E. Kahn
2017   Radiology
doi:10.1148/radiol.2017171734  pmid:29155645 
[b6]

via grobid
When Machines Think: Radiology's Next Frontier
Keith J. Dreyer, J. Raymond Geis
2017   Radiology
doi:10.1148/radiol.2017171183  pmid:29155639 
[b7]

via grobid
Deep learning
Yann LeCun, Yoshua Bengio, Geoffrey Hinton
2015   Nature
doi:10.1038/nature14539  pmid:26017442 
web.archive.org [PDF]
[b8]

via grobid
Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks
Paras Lakhani, Baskaran Sundaram
2017   Radiology
doi:10.1148/radiol.2017162326  pmid:28436741 
[b9]

via grobid
Deep Learning based Radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma
Zeju Li, Yuanyuan Wang, Jinhua Yu, Yi Guo, Wei Cao
2017   Scientific Reports
doi:10.1038/s41598-017-05848-2  pmcid:PMC5511238  pmid:28710497 
web.archive.org [PDF]
[b10]

via grobid
Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study
Koichiro Yasaka, Hiroyuki Akai, Osamu Abe, Shigeru Kiryu
2018   Radiology
doi:10.1148/radiol.2017170706  pmid:29059036 
[b11]

via grobid
Automated Whole-Body Bone Lesion Detection for Multiple Myeloma on 68Ga-Pentixafor PET/CT Imaging Using Deep Learning Methods
Lina Xu, Giles Tetteh, Jana Lipkova, Yu Zhao, Hongwei Li, Patrick Christ, Marie Piraud, Andreas Buck (+ more)
2018   Contrast Media & Molecular Imaging
doi:10.1155/2018/2391925  pmcid:PMC5817261  pmid:29531504 
web.archive.org [PDF]
[b12]

via grobid
Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-Net convolutional neural network study
Paul Blanc-Durand, Axel Van Der Gucht, Niklaus Schaefer, Emmanuel Itti, John O. Prior, Jonathan H Sherman
2018   PLoS ONE
doi:10.1371/journal.pone.0195798  pmcid:PMC5898737  pmid:29652908 
web.archive.org [PDF]
[b13]

via grobid
Predicting Response to Neoadjuvant Chemotherapy with PET Imaging Using Convolutional Neural Networks
Petros-Pavlos Ypsilantis, Musib Siddique, Hyon-Mok Sohn, Andrew Davies, Gary Cook, Vicky Goh, Giovanni Montana, Ruby John Anto
2015   PLoS ONE
doi:10.1371/journal.pone.0137036  pmcid:PMC4565716  pmid:26355298 
web.archive.org [PDF]
[b14]

via grobid
Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929-58.
[b15]

via grobid
Haykin S. Neural Networks: A Comprehensive Foundation. Prentice Hall; 1994.
[b16]

via grobid
A vector quantization method for nearest neighbor classifier design
Chen-Wen Yen, Chieh-Neng Young, Mark L Nagurka
2004   Pattern Recognition Letters
doi:10.1016/j.patrec.2004.01.012 
web.archive.org [PDF]
[b17]

via grobid
A new approach to improve neural networks' algorithm in permeability prediction of petroleum reservoirs using supervised committee machine neural network (SCMNN)
Sadegh Karimpouli, Nader Fathianpour, Jaber Roohi
2010   Journal of Petroleum Science and Engineering
doi:10.1016/j.petrol.2010.07.003 
[b18]

via grobid
Recurrent Neural Networks for Emotion Recognition in Video
Samira Ebrahimi Kahou, Vincent Michalski, Kishore Konda, Roland Memisevic, Christopher Pal
2015   International Conference on Multimodal Interaction
doi:10.1145/2818346.2830596  dblp:conf/icmi/KahouMKMP15 
[b19]

via grobid
Diederik PK, Jimmy B. Adam: A Method for Stochastic Optimization. In arXiv:14126980. 2014.
[b20]

via grobid
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. In arXiv:161002391v3. 2017.
[b21]

via grobid
Nie D, Cao X, Gao Y, Wang L, Shen D. Estimating CT Image from MRI Data Using 3D
[b22]

via grobid
Estimating CT Image from MRI Data Using 3D Fully Convolutional Networks [chapter]
Dong Nie, Xiaohuan Cao, Yaozong Gao, Li Wang, Dinggang Shen
2016   Lecture Notes in Computer Science
doi:10.1007/978-3-319-46976-8_18  pmcid:PMC5654583  pmid:29075680 
[b23]

via grobid
Generation of Structural MR Images from Amyloid PET: Application to MR-Less Quantification
Hongyoon Choi, Dong Soo Lee
2017   Journal of Nuclear Medicine
doi:10.2967/jnumed.117.199414  pmcid:PMC6910644  pmid:29217736 
web.archive.org [PDF]
[b24]

via grobid
MR-based synthetic CT generation using a deep convolutional neural network method
Xiao Han
2017   Medical Physics (Lancaster)
doi:10.1002/mp.12155  pmid:28192624 
[b25]

via grobid
Convolutional Neural Networks for Neuroimaging in Parkinson's Disease: Is Preprocessing Needed?
Francisco J. Martinez-Murcia, Juan M. Górriz, Javier Ramírez, Andres Ortiz
2018   International Journal of Neural Systems
doi:10.1142/s0129065718500351  pmid:30215285 
[b26]

via fuzzy
Predicting Lymph Node Metastasis in Head and Neck Cancer by Combining Many-objective Radiomics and 3-dimensioal Convolutional Neural Network through Evidential Reasoning [article]
Zhiguo Zhou, Liyuan Chen, David Sher, Qiongwen Zhang, Jennifer Shah, Nhat-Long Pham, Steve Jiang, Jing Wang
2018    pre-print
version:v1  arXiv:1805.07021v1 
web.archive.org [PDF]
[b27]

via grobid
Predicting Lymph Node Metastasis in Head and Neck Cancer by Combining Many-objective Radiomics and 3-dimensioal Convolutional Neural Network through Evidential Reasoning*
Zhiguo Zhou, Liyuan Chen, David Sher, Qiongwen Zhang, Jennifer Shah, Nhat-Long Pham, Steve Jiang, Jing Wang
2018   IEEE Engineering in Medicine and Biology Society. Conference Proceedings
doi:10.1109/embc.2018.8513070  pmcid:PMC7103090  pmid:30440295 
web.archive.org [PDF]
[b28]

via grobid
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016
[b29]

via grobid
Deep Residual Learning for Image Recognition
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
2016   Computer Vision and Pattern Recognition
doi:10.1109/cvpr.2016.90  dblp:conf/cvpr/HeZRS16 
web.archive.org [PDF]
Showing 1 - 30 of 32 references  next »