Compressive three-dimensional super-resolution microscopy with speckle-saturated fluorescence excitation release_sdsqwyiozfhj3cxuffpclqs5ja

by Marco Pascucci, Sivaramankrishna Ganesan, Aditya Tripathy, Ori Katz, Valentina Emiliani, Marc Guillon

Released as a article .

2017  

Abstract

Nonlinear structured illumination microscopy (nSIM) is an effective approach for super-resolution wide-field fluorescence microscopy with a theoretically unlimited resolution. In nSIM, carefully designed, highly-contrasted illumination patterns are combined with the saturation of an optical transition to enable sub-diffraction imaging. While the technique proved useful for two-dimensional imaging, extending it to three-dimensions (3D) is challenging due to the fading/fatigue of organic fluorophores under intense cycling conditions. Here, we present a compressed sensing approach that allows for the first time 3D sub-diffraction nSIM of cultured cells by saturating fluorescence excitation. Exploiting the natural orthogonality of transverse speckle illumination planes, 3D probing of the sample is achieved by a single two-dimensional scan. Fluorescence contrast under saturated excitation is ensured by the inherent high density of intensity minima associated with optical vortices in polarized speckle patterns. Compressed speckle microscopy is thus a simple approach that enables 3D super-resolved nSIM imaging with potentially considerably reduced acquisition time and photobleaching.les fast 3D super-resolved imaging with considerably minimized photo-bleaching.
In text/plain format

Archived Files and Locations

application/pdf  6.2 MB
file_xjztidrworaktif2rlsrltbdjy
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article
Stage   submitted
Date   2017-10-13
Version   v1
Language   en ?
arXiv  1710.05056v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: d5a842a4-e635-44b5-810e-b389337ae7ef
API URL: JSON