Infrared detection of aliphatic organics on a cometary nucleus release_rz2gic7mkjahpbofsi5htmqepm

by A. Raponi, M. Ciarniello, F. Capaccioni, V. Mennella, G. Filacchione, V. Vinogradoff, O. Poch, P. Beck, E. Quirico, M. C. De Sanctis, L. Moroz, D. Kappel (+19 others)

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 54 references (in 125ms)
[b0]

via grobid
K. H. Glassmeier, et al., The Rosetta Mission: Flying Towards the Origin of the Solar System,Space Sci. Rev., 128, 1-21 (2007).
[b1]

via grobid
A. Coradini et al., VIRTIS: An imaging spectrometer for the Rosetta mission, Space Sci. Rev. 128, 529-559 (2007).
[b2]

via grobid
G. Filacchione et al., Space Sci. Rev. special issue on "Comets: post 67P Perspective" ISSI Workshop, accepted.
[b3]

via fuzzy
The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage
Michael J. Mumma, Steven B. Charnley
2011   Annual Review of Astronomy and Astrophysics
doi:10.1146/annurev-astro-081309-130811 
web.archive.org [PDF]
[b4]

via grobid
A. Bardyn, et al., Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta, Mon. Notices Royal Astron. Soc., 469, Suppl_2, p. S712-S722 (2017).
[b5]

via grobid
N. Fray et al., High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko, Nature, 538, 7623, pp. 72-74 (2016).
[b6]

via grobid
K. Altwegg, et al., Organics in comet 67P -a first comparative analysis of mass spectra from ROSINA-DFMS, COSAC and Ptolemy, Mon. Notices Royal Astron. Soc., 469, Issue Suppl_2, p.S130-S141 (2017).
[b7]

via grobid
F. Capaccioni, et al., The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta, Science, 347, aaa0628 (2015).
[b8]

via grobid
E. Quirico, et al., Refractory and semi-volatile organics at the surface of comet 67P/Churyumov-Gerasimenko: Insights from the VIRTIS/Rosetta imaging spectrometer, Icarus, 272, 32-47 (2016).
[b9]

via grobid
M. Ciarniello, et al., Photometric properties of comet 67P/Churyumov-Gerasimenko from VIRTIS-M onboard Rosetta, Astron. Astrophys. 583, A31 (2015).
[b10]

via grobid
M. C. De Sanctis, et al., The diurnal cycle of water ice on comet 67P/Churyumov- Gerasimenko, Nature, 525, 500-503 (2015).
[b11]

via grobid
M. Ciarniello, et al., The global surface composition of 67P/Churyumov-Gerasimenko nucleus by Rosetta/VIRTIS. II) Diurnal and seasonal variability, Mon. Notices Royal Astron. Soc., 462, p. S443-S458 (2016).
[b12]

via grobid
L. Moroz, et al., Natural Solid Bitumens as Possible Analogs for Cometary and Asteroid Organics: 1. Reflectance Spectroscopy of Pure Bitumens, Icarus, 134, pp. 253-268. (1998).
[b13]

via grobid
S. A. Sandford, et al., The Interstellar C-H Stretching Band Near 3.4 microns: Constraints on the Composition of Organic Material in the Diffuse Interstellar Medium. Astrophysical Journal, 371, 607 -620 (1991).
[b14]

via grobid
L. P. Keller, et al., The nature of molecular cloud material in interplanetary dust, Geochim. Cosmochim. Acta, 68, p. 2577-2589 (2004).
[b15]

via grobid
Y. J. Pendleton, et al., Near Infrared Absorption Spectroscopy of Interstellar Hydrocarbon Grains. Astrophysical Journal. 437, 683 -696 (1994).
[b16]

via grobid
E. Dartois, et al., Organic matter in Seyfert 2 nuclei: Comparison with our Galactic center lines of sight, Astron. Astrophys., 423, p.549-558 (2004).
[b17]

via grobid
H. H. Kaplan, et al., New Constraints on the Abundance and Composition of Organic Matter on Ceres, Geophys. Res. Lett., 45, pp. 5274-5282 (2018).
[b18]

via grobid
Y. Kebukawa, et al., Compositional diversity in insoluble organic matter in type 1, 2 and 3 chondrites as detected by infrared spectroscopy, Geochim. Cosmochim. Acta, 75, p. 3530- 3541 (2011).
[b19]

via grobid
F.-R Orthous-Daunay, et al., Mid-infrared study of the molecular structure variability of insoluble organic matter from primitive chondrites, Icarus, 223, p. 534-543 (2013).
[b20]

via grobid
C. M. O.'D. Alexander, et al., The origin and evolution of chondrites recorded in the elemental and isotopic compositions of their macromolecular organic matter, Geochim. Cosmochim. Acta, 71, p. 4380-4403 (2007).
[b21]

via grobid
J. Y. Seok and A. Li. Polycyclic Aromatic Hydrocarbons in Protoplanetary Disks around Herbig Ae/Be and T Tauri Stars, Astrophys. J., 835, Issue 2, article id. 291, 36 pp. (2017).
[b22]

via grobid
G. M. Muñoz Caro and W. A. Schutte, UV-photoprocessing of interstellar ice analogs: New infrared spectroscopic results, Astron. Astrophys., 412, p.121-132 (2003).
[b23]

via grobid
W. A. Schutte and R. K. Khanna, Origin of the 6.85 um band near young stellar objects: The ammonium ion (NH4 + ) revisited, Astron. Astrophys., 398(3), 1049-1062 (2003).
[b24]

via grobid
A.C.A. Boogert, P. A. Gerakines, D. C. B. Whittet, Observations of the Icy Universe. Annual Review of Astronomy and Astrophysics. 53, 541-581 (2015).
[b25]

via fuzzy
THE 3–4μm SPECTRA OF JUPITER TROJAN ASTEROIDS
M. E. Brown
2016   Astronomical Journal
doi:10.3847/0004-6256/152/6/159 
web.archive.org [PDF]
[b26]

via grobid
D. P. Cruikshank, et al., Aromatic and aliphatic organic materials on Iapetus: Analysis of Cassini VIMS data, Icarus, 233, 306-315 (2014).
[b27]

via grobid
A. S. Rivkin, J. P. Emery, Detection of ice and organics on an asteroidal surface, Nature, 464, pp. 1322-1323 (2010).
[b28]

via grobid
J. Licandro, et al., (65) Cybele: detection of small silicate grains, water-ice, and organics, Astron. Astrophys., 525, id.A34, 7 pp. (2011).
[b29]

via grobid
D. Takir and J. P. Emery, Outer Main Belt asteroids: Identification and distribution of four 3-μm spectral groups, Icarus, 219, p. 641-654 (2012).
Showing 1 - 30 of 54 references  next »