Cryopreservation-Induced Stress on Long-Term Preserved Articular Cartilage
release_rqwulwfdyrhrzj7xwsnfsmlcqu
by
rajdeep kaur, Krishna Pramanik, S. K. Sarangi
Abstract
Tissue engineered cartilage constructs have potential clinical applications in human healthcare. Their effective utilization is, however, hampered by the lack of an optimal cryopreservation procedure that ensures their availability as and when required at the patient's bedside. Cryopreservation-induced stress represents a major barrier towards the cryopreservation of such tissue constructs, and they remain a scientific challenge despite the significant progress in the long-term storage and banking of isolated chondrocytes and thin cartilage tissue slices. These stresses are caused by intra- and extracellular ice crystallization, cryoprotectant (CPA) toxicity, suboptimal rates of cooling and warming, osmotic imbalance, and altered intracellular pH that might cause cellular death and/or a disruption of extracellular matrix (ECM). This paper reviews the cryopreservation-induced stresses on tissue engineered cartilages and discusses how they influence the integrity of the tissue during its long-term preservation. We have also reported how various antioxidants, vitamins, and plant extracts have been used to inhibit and overcome the stress during cryopreservation and provide promising results.
Based on the reviewed information, the paper has also proposed some novel ways which might help in increasing the postthawing cell viability of cryopreserved cartilage.
In application/xml+jats
format
Archived Content
There are no accessible files associated with this release. You could check other releases for this work for an accessible version.
Know of a fulltext copy of on the public web? Submit a URL and we will archive it
Open Access Publication
Not in DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:
2314-4696
access all versions, variants, and formats of this works (eg, pre-prints)
Crossref Metadata (via API)
Worldcat
SHERPA/RoMEO (journal policies)
wikidata.org
CORE.ac.uk
Semantic Scholar
Google Scholar