Identification of Hub Genes in Atypical Teratoid/Rhabdoid Tumor by Bioinformatics Analyses release_rev_33340bfe-6032-449e-9ddb-668362595c0a

by Xin Pan, Wei Liu, Yi Chai, Libo Hu, Junhua Wang, Yuqi Zhang

Published in Journal of Molecular Neuroscience by Springer Science and Business Media LLC.

2020  

Abstract

Atypical teratoid/rhabdoid tumor (ATRT) is a devastating intracranial tumor in children. Currently, its molecular mechanisms cannot be studied effectively because patient samples are limited, and many factors are involved in its pathogenesis. In this study, we analyzed three gene expression profile data sets obtained from the Gene Expression Omnibus (GEO) database to identify genes that participate in ATRT. The datasets were integrated and analyzed using the RobustRankAggreg method to screen for differentially expressed genes (DEGs). We identified 197 DEGs, including 94 downregulated and 103 upregulated genes which were then used for gene set enrichment analysis. The results showed that the downregulated genes were mainly enriched in synaptic vesicle cycle, nicotine addiction, and GABAergic synapse, whereas the upregulated genes were enriched in the cell cycle, p53 signaling pathway, and cellular senescence. Consistent with these results, gene set enrichment analysis showed that E2F targets, G2M checkpoints, and MYC targets were significantly enriched in datasets. Protein-protein interaction (PPI) network revealed that CDK1, CCNA2, BUB1B, CDC20, KIF11, KIF20A, KIF2C, NCAPG, NDC80, NUSAP1, PBK, RRM2, TPX2, TOP2A, and TTK were hub genes. NetworkAnalyst algorithm was used to predict the transcription factor (TF), and the results showed that MYC, SOX2, and KDM5B could regulate these hub genes. In conclusion, the present study brings a new perspective of ATRT pathogenesis and the strategy targeted to cell cycle related gene may be promising treatments for the disease.
In text/plain format

Type  article-journal
Stage   published
Date   2020-05-21
Language   en ?
Journal Metadata
Not in DOAJ
In Keepers Registry
ISSN-L:  0895-8696
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Revision

This is a specific, static metadata record, not necessarily linked to any current entity in the catalog.

Catalog Record
Revision: 33340bfe-6032-449e-9ddb-668362595c0a
API URL: JSON