Light Scattering Materials as Photoanodes release_rev_301d6cf4-bad7-4fd8-b701-2ccca0a08c5c

by Rajkumar C, A. Arulraj

References

This release citing other releases
  1. Layered‐stacking of titania films for solar energy conversion: toward tailored optical, electronic and photovoltaic performance J. Energy Chem..2018690 (DOI: 10.1016/j.jechem.2017.11.030)
  2. Photovoltaic studies of dye sensitized solar cells fabricated from microwave exposed photo anodes IOP Conf. Ser. Mater. Sci. Eng..2018012151 (DOI: 10.1088/1757-899x/310/1/012151)
  3. Lead free, air stable perovskite derivative Cs2SnI6 as HTM in DSSCs employing TiO2 nanotubes as photoanode Mater. Res. Bull..2018113 (DOI: 10.1016/j.materresbull.2018.08.046)
  4. The way forward for the modification of dye‐sensitized solar cell towards better power conversion efficiency Renewable Sustainable Energy Rev..2017438 (DOI: 10.1016/j.rser.2017.02.063)
  5. Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review Renewable Sustainable Energy Rev..201789 (DOI: 10.1016/j.rser.2017.03.129)
  6. Hierarchically structured photoanode with enhanced charge collection and light harvesting abilities for fiber‐shaped dye‐sensitized solar cells Nano Energy.201895 (DOI: 10.1016/j.nanoen.2018.04.037)
  7. Effect of different photoanode nanostructures on the initial charge separation and electron injection process in dye sensitized solar cells: a photophysical study with indoline dyes Mater. Chem. Phys..2016218 (DOI: 10.1016/j.matchemphys.2015.12.042)
  8. Theoretical study of application of multiple scattering of light to a dye‐sensitized nanocrystalline photoelectrichemical cell Chem. Phys. Lett..1997105 (DOI: 10.1016/s0009-2614(97)00878-6)
  9. Recent advances in optimization of photoanodes and counter electrodes of dye‐sensitized solar cells Curr. Sci..2017228 (DOI: 10.18520/cs/v113/i02/228-235)
  10. Applications of light scattering in dye‐sensitized solar cells Phys. Chem. Chem. Phys..201214982 (DOI: 10.1039/c2cp43089d)
  11. A review on materials for light scattering in dye‐sensitized solar cells RSC Adv..201417615 (DOI: 10.1039/c4ra01308e)
  12. Computer simulations of light scattering and absorption in dye‐sensitized solar cells Sol. Energy Mater. Sol. Cells.1998265 (DOI: 10.1016/s0927-0248(98)00078-6)
  13. A contribution to the optical design of dye‐sensitized nanocrystalline solar cells Sol. Energy Mater. Sol. Cells.1999321 (DOI: 10.1016/s0927-0248(99)00015-x)
  14. An electrical model of the dye‐sensitized solar cell Sol. Energy Mater. Sol. Cells.199829 (DOI: 10.1016/s0927-0248(98)00005-1)
  15. Influence of scattering layers on efficiency of dye‐sensitized solar cells Sol. Energy Mater. Sol. Cells.20061176 (DOI: 10.1016/j.solmat.2005.07.002)
  16. Optical properties of nano‐structured dye‐sensitized solar cells Sol. Energy Mater. Sol. Cells.2001147 (DOI: 10.1016/s0927-0248(00)00388-3)
  17. Quantitative analysis of light‐harvesting efficiency and electron‐transfer yield in ruthenium‐dye‐sensitized nanocrystalline TiO2 solar cells Chem. Mater..20022527 (DOI: 10.1021/cm011563s)
  18. TiO2 hollow spheres as light scattering centers in TiO2 photoanodes for dye‐sensitized solar cells: the effect of sphere diameter J. Alloys Compd..2016211 (DOI: 10.1016/j.jallcom.2015.12.118)
  19. Scattering spherical voids in nanocrystalline TiO2? Enhancement of efficiency in dye‐sensitized solar cells Chem. Commun..20052011 (DOI: 10.1039/b418658n)
  20. Assembly of a high‐scattering photoelectrode using a hybrid nano‐TiO2 paste J. Mater. Chem. C.20156645 (DOI: 10.1039/c5tc00860c)
  21. The application of inverse titania opals in nanostructured solar cells Sol. Energy Mater. Sol. Cells.2005115
  22. Standing wave enhancement of red absorbance and photocurrent in dye‐sensitized titanium dioxide photoelectrodes coupled to photonic crystals J. Am. Chem. Soc..20036306 (DOI: 10.1021/ja034650p)
  23. Wave propagation and scattering in random media and rough surfaces Proc. IEEE.19911359 (DOI: 10.1109/5.104210)
  24. Bilayer TiO2 photoanode consisting of a nanowire–nanoparticle bottom layer and a spherical voids scattering layer for dye‐sensitized solar cells New J. Chem..20154845 (DOI: 10.1039/c5nj00216h)
  25. Enhancement of dye‐sensitized solar cell efficiency by spherical voids in nanocrystalline ZnO electrodes Korean J. Mater. Res..2014458 (DOI: 10.3740/mrsk.2014.24.9.458)
  26. Light scattering enhanced photoanodes for dye‐sensitized solar cells prepared by carbon spheres/TiO2 nanoparticle composites Curr. Appl. Phys..2011376 (DOI: 10.1016/j.cap.2010.08.008)
  27. The effect of functionally graded porous nano structure TiO2 photoanode on efficiency of dye sensitized solar cells Sol. Energy.2017699 (DOI: 10.1016/j.solener.2016.11.033)
  28. Influence of size and shape of sub‐micrometer light scattering centers in ZnO‐assisted TiO2 photoanode for dye‐sensitized solar cells Physica B.2018225 (DOI: 10.1016/j.physb.2017.03.016)
  29. Light scattering enhancement from sub‐micrometer cavities in the photoanode for dye‐sensitized solar cells J. Mater. Chem..201216201 (DOI: 10.1039/c2jm32401f)
  30. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO‐based dye‐sensitized solar cells Nanoscale Res. Lett..2014
  31. Dye‐sensitized solar cells based on anatase TiO2 nanoparticle/nanowire composites J. Phys. Chem. B.200615932 (DOI: 10.1021/jp063972n)
  32. Dye‐sensitized solar cells based on semiconductor morphologies with ZnO nanowires Sol. Energy Mater. Sol. Cells.2006607 (DOI: 10.1016/j.solmat.2005.05.010)
  33. Composite of TiO2 nanofibers and nanoparticles for dye‐sensitized solar cells with significantly improved efficiency Energy Environ. Sci..20101507 (DOI: 10.1039/c0ee00068j)
  34. Material science: Spinning continuous fibers for nanotechnology Science.20041917 (DOI: 10.1126/science.1099074)
  35. TiO2 nanoparticle/nanofiber–ZnO photoanode for the enhancement of the efficiency of dye‐sensitized solar cells RSC Adv..201741738 (DOI: 10.1039/c7ra07644d)
  36. Thermodynamic barrier and light scattering effects of nanocube assembled SrTiO3 in enhancing the photovoltaic properties of zinc oxide based dye sensitized solar cells J. Phys. Chem. C.201816550 (DOI: 10.1021/acs.jpcc.8b03623)
  37. Understanding the role of silica nanospheres with their light scattering and energy barrier properties in enhancing the photovoltaic performance of ZnO based solar cells Phys. Chem. Chem. Phys..201627818 (DOI: 10.1039/c6cp05544c)
  38. Design of SnO2 aggregate/nanosheet composite structures based on function‐matching strategy for enhanced dye‐sensitized solar cell performance Materials.20181774 (DOI: 10.3390/ma11091774)
  39. Photovoltaic performance analysis of dye‐sensitized solar cell based on the Ag(4,4′‐dicyanamidobiphenyl) complex as a light‐scattering layer agent and linker molecule on TiO2 photoanode IEEE J. Photovoltaics.20181230 (DOI: 10.1109/jphotov.2018.2829779)
  40. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye‐sensitized solar cell Coord. Chem. Rev..20041381 (DOI: 10.1016/j.ccr.2004.03.006)
  41. Light scattering TiO2 particles surface‐modified by Al2O3 coating in a dye‐sensitized solar cell Phys. Scr..2012025801 (DOI: 10.1088/0031-8949/85/02/025801)
  42. Aggregated mesoporous nanoparticles for high surface area light scattering layer TiO2 photoanodes in dye‐sensitized solar cells Sci. Rep..201710341 (DOI: 10.1038/s41598-017-09911-w)
  43. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: a superior candidate for high‐performance dye‐sensitized solar cells Adv. Mater..20092206 (DOI: 10.1002/adma.200802603)
  44. Dye‐sensitized solar cells employing a achieve power conversion efficiencies single film of mesoporous TiO2 beads over 10% ACS Nano.20104420 (DOI: 10.1021/nn1010396)
  45. Formation of highly efficient dye‐sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres Adv. Mater..20093668 (DOI: 10.1002/adma.200900294)
  46. Monolithic route to efficient dye‐sensitized solar cells employing diblock copolymers for mesoporous TiO2 J. Mater. Chem..20101261 (DOI: 10.1039/b920077k)
  47. TiO2 nanoparticles synthesized by the molten salt method as a dual functional material for dye‐sensitized solar cells RSC Adv..20125123 (DOI: 10.1039/c2ra00041e)
  48. Double light‐scattering layer film based on TiO2 hollow spheres and TiO2 nanosheets: improved efficiency in dye‐sensitized solar cells J. Alloys Compd..2013168 (DOI: 10.1016/j.jallcom.2013.02.045)
  49. Preparations of TiO2 pastes and its application to light‐scattering layer for dye‐sensitized solar cells J. Ind. Eng. Chem..2009724 (DOI: 10.1016/j.jiec.2009.09.053)
  50. Light harvesting enhancement for dye‐sensitized solar cells by novel anode containing cauliflower‐like TiO2 spheres J. Power Sources.2008370 (DOI: 10.1016/j.jpowsour.2008.03.013)
  51. Electrophoretically deposited TiO2 nanotube light‐scattering layers of dye‐sensitized solar cells Jpn. J. Appl. Phys..20086610 (DOI: 10.1143/jjap.47.6610)
  52. Improved efficiency of dye‐sensitized solar cells aided by corn‐like TiO2 nanowires as the light scattering layer Electrochim. Acta.2013302 (DOI: 10.1016/j.electacta.2012.12.065)
  53. Double‐layered photoanodes from variable‐size anatase TiO2 nanospindles: a candidate for high‐efficiency dye‐sensitized solar cells Angew. Chem. Int. Ed..20103675 (DOI: 10.1002/anie.200906933)
  54. Efficient dye‐sensitized solar cells using electrospun TiO2 nanofibers as a light harvesting layer Appl. Phys. Lett..2008 (DOI: 10.1063/1.2958347)
  55. Nanofiber‐structured TiO2 nanocrystals as a scattering layer in dye‐sensitized solar cells ECS J. Solid State Sci. Technol..2017N32 (DOI: 10.1149/2.0181704jss)
  56. Which is a superior material for scattering layer in dye‐sensitized solar cells – electrospun rice grain‐ or nanofiber‐shaped TiO2? J. Mater. Chem..201112210 (DOI: 10.1039/c1jm11939g)
  57. Rice grain‐shaped TiO2 mesostructures by electrospinning for dye‐sensitized solar cells Chem. Commun..20107421 (DOI: 10.1039/c0cc01490g)
  58. Rice grain‐shaped TiO2 mesostructures – synthesis, characterization and applications in dye‐sensitized solar cells and photocatalysis J. Mater. Chem..20116541 (DOI: 10.1039/c0jm04512h)
  59. Electrospun nest‐shaped TiO2 structures as a scattering layer for dye sensitized solar cells J. Mater. Chem..201224326 (DOI: 10.1039/c2jm33219a)
  60. Nano‐embossed hollow spherical TiO2 as bifunctional material for high‐efficiency dye‐sensitized solar cells Adv. Mater..2008195 (DOI: 10.1002/adma.200700840)
  61. Planar scattering from hierarchical anatase TiO2 nanoplates with variable shells to improve light harvesting in dye‐sensitized solar cells Chem. Commun..20115046 (DOI: 10.1039/c1cc10548e)
  62. Hexagonal TiO2 microplates with superior light scattering for dye‐sensitized solar cells J. Mater. Chem..201220773 (DOI: 10.1039/c2jm34029a)
  63. Increasing the conversion efficiency of dye‐sensitized TiO2 photoelectrochemical cells by coupling to photonic crystals J. Phys. Chem. B.20056334 (DOI: 10.1021/jp044228a)
  64. Spherical TiO2 aggregates with different building units for dye‐sensitized solar cells Nanoscale.20138177 (DOI: 10.1039/c3nr01767b)
  65. Hierarchical submicroflowers assembled from ultrathin anatase TiO2 nanosheets as light scattering centers in TiO2 photoanodes for dye‐sensitized solar cells J. Alloys Compd..20191002 (DOI: 10.1016/j.jallcom.2018.10.386)
  66. Cubic CeO2 nanoparticles as mirror‐like scattering layers for efficient light harvesting in dye‐sensitized solar cells Chem. Commun..20127386 (DOI: 10.1039/c2cc32239k)
  67. Influence of photoanode architecture on light scattering mechanism and device performance of dye‐sensitized solar cells using TiO2 hollow cubes and nanoparticles J. Taiwan Inst. Chem. Eng..201881 (DOI: 10.1016/j.jtice.2018.02.014)
  68. Anatase TiO2 hollow microspheres fabricated by continuous spray pyrolysis as a scattering layer in dye‐sensitised solar cells Energy Procedia.2013223 (DOI: 10.1016/j.egypro.2013.05.061)
  69. Spectral response of opal‐based dye‐sensitized solar cells J. Phys. Chem. C.200813 (DOI: 10.1021/jp7105633)
  70. Dye‐sensitized solar cell based on a three‐dimensional photonic crystal Nano Lett..20102303 (DOI: 10.1021/nl904017t)
  71. Enhanced performance for dye‐sensitized solar cells based on spherical TiO2 nanorod‐aggregate light‐scattering layer J. Power Sources.2012280 (DOI: 10.1016/j.jpowsour.2012.06.104)
  72. Mesoporous SnO2 agglomerates with hierarchical structures as an efficient dual‐functional material for dye‐sensitized solar cells Chem. Commun..201210865 (DOI: 10.1039/c2cc36049g)
  73. Efficient dye‐sensitized solar cells based on nanoflower‐like ZnO photoelectrode Molecules.20171284 (DOI: 10.3390/molecules22081284)
  74. Designed synthesis of SiO2/TiO2 core/shell structure As light scattering material for highly efficient dye‐sensitized solar cells ACS Appl. Mater. Interfaces.20134815 (DOI: 10.1021/am400441v)
  75. The synthesis and application of TiO2 microspheres as scattering layer in dye‐sensitized solar cells J. Mater. Sci. Mater. Electron..20187356 (DOI: 10.1007/s10854-018-8725-9)
  76. Enhanced photoelectrochemical performances in flexible mesoscopic solar cells: an effective light‐scattering material ChemPhotoChem.2018986 (DOI: 10.1002/cptc.201800089)
  77. Nanostructured anatase titania spheres as light scattering layer in dye‐sensitized solar cells Procedia Technol..2016767 (DOI: 10.1016/j.protcy.2016.05.051)
  78. A comparative study between titania and zirconia as material for scattering layer in dye‐sensitized solar cells J. Phys. Conf. Ser..2018012003 (DOI: 10.1088/1742-6596/1011/1/012003)
  79. Using nanodiamond particles in photoanode of dye‐sensitised solar cell Micro Nano Lett..2018154 (DOI: 10.1049/mnl.2017.0450)
  80. Improved performance of dye‐sensitized solar cells with TiO2 nanoparticles/Zn‐doped TiO2 hollow fiber photoanodes Energies.20182922 (DOI: 10.3390/en11112922)
  81. Improvement in light harvesting and device performance of dye sensitized solar cells using electrophoretic deposited hollow TiO2 NPs scattering layer Sol. Energy Mater. Sol. Cells.2017255 (DOI: 10.1016/j.solmat.2016.11.037)
  82. A ZnO nanorod layer with a superior light‐scattering effect for dye‐sensitized solar cells RSC Adv..201318537 (DOI: 10.1039/c3ra41827h)
  83. High energy conversion efficiency with 3‐D micro‐patterned photoanode for enhancement diffusivity and modification of photon distribution in dye‐sensitized solar cells Sci. Rep..201715027 (DOI: 10.1038/s41598-017-15110-4)
  84. Morphology‐controllable 1D‐3D nanostructured TiO2 bilayer photoanodes for dye‐sensitized solar cells Chem. Commun..2013966 (DOI: 10.1039/c2cc37212f)
  85. Quintuple‐shelled SnO2 hollow microspheres with superior light scattering for high‐performance dye‐sensitized solar cells Adv. Mater..2014905 (DOI: 10.1002/adma.201304010)
  86. Three‐dimensional graphene networks and reduced graphene oxide nanosheets co‐modified dye‐sensitized solar cells RSC Adv..201745280 (DOI: 10.1039/c7ra09135d)
  87. Multi‐functional 3D N‐doped TiO2 microspheres used as scattering layers for dye‐sensitized solar cells Front. Chem. Sci. Eng..2017395 (DOI: 10.1007/s11705-017-1643-1)
  88. Bilayered photoanode consisting of zinc oxide hollow spheres and urchin‐like titanium dioxide microspheres enables fast electron transport and efficient light‐harvesting for improved‐performance dye‐sensitized solar cells RSC Adv..201617280 (DOI: 10.1039/c5ra25225c)
  89. Tin oxide light‐scattering layer for titania photoanodes in dye‐sensitized solar cells Energy Technol..2016959 (DOI: 10.1002/ente.201600008)
  90. Graphene based photoanode for DSSCs with high performances RSC Adv..201829220 (DOI: 10.1039/c8ra05211e)
  91. Monte Carlo simulation for optimization of a simple and efficient bifacial DSSC with a scattering layer in the middle Sol. Energy.201864 (DOI: 10.1016/j.solener.2017.12.024)
  92. Application of a nanostructured, tri‐layer TiO2 photoanode for efficiency enhancement in quasi‐solid electrolyte‐based dye‐sensitized solar cells J. Appl. Electrochem..20171239 (DOI: 10.1007/s10800-017-1116-8)
  93. An innovative TiO2 nanoparticle/nanofibre/nanoparticle, three layer composite photoanode for efficiency enhancement in dye‐sensitized solar cells J. Photochem. Photobiol. A.2016110 (DOI: 10.1016/j.jphotochem.2016.02.017)
  94. Constructing synergetic trilayered TiO2 photoanodes based on a flexible nanotube array/Ti substrate for efficient solar cells ChemNanoMat.201758 (DOI: 10.1002/cnma.201600243)
  95. Performance optimization of dye‐sensitized solar cells by multilayer gradient scattering architecture of TiO2 microspheres Nanotechnology.2017035201 (DOI: 10.1088/1361-6528/28/3/035201)
  96. Enhanced efficiency in dye‐sensitised solar cells using a TiO2‐based sandwiched film as photoanode Micro Nano Lett..2011579 (DOI: 10.1049/mnl.2011.0225)
  97. Enhanced efficiency of large‐area dye‐sensitized solar cells by light‐scattering effect using multilayer TiO2 photoanodes Mater. Res. Bull..2018434 (DOI: 10.1016/j.materresbull.2017.12.032)
  98. Novel photoanode architecture for optimal dye‐sensitized solar cell performance and its small cell module study Sustainable Energy Fuels.2017439 (DOI: 10.1039/c7se00046d)
  99. Binder‐free MWCNT/TiO2 multilayer nanocomposite as an efficient thin interfacial layer for photoanode of dye sensitized solar cell Mater. Sci. Semicond. Process..201720 (DOI: 10.1016/j.mssp.2017.05.036)
  100. Shape‐tailored TiO2 nanocrystals with synergic peculiarities as building blocks for highly efficient multi‐stack dye solar cells Energy Environ. Sci..20131791 (DOI: 10.1039/c3ee24345a)
  101. Multi‐layered architecture of electrodes containing uniform TiO2 aggregates layers for improving the light scattering efficiency of dye‐sensitized solar cells J. Mater. Sci. Mater. Electron..20159808 (DOI: 10.1007/s10854-015-3653-4)
  102. Microwave‐solvothermal synthesis of various TiO2 nano‐morphologies with enhanced efficiency by incorporating Ni nanoparticles in an electrolyte for dye‐sensitized solar cells Inorg. Chem. Front..20171665 (DOI: 10.1039/c7qi00329c)
  103. Highly efficient plasmon‐enhanced dye‐sensitized solar cells through metal@oxide core–shell nanostructure ACS Nano.20117108 (DOI: 10.1021/nn201808g)
  104. Surface plasmonic effect of Ag enfold ZnO pyramid nanostructured photoanode for enhanced dye sensitized solar cell application Ceram. Int..201821314 (DOI: 10.1016/j.ceramint.2018.08.183)
  105. Enhancement of low energy sunlight harvesting in dye‐sensitized solar cells using plasmonic gold nanorods Energy Environ. Sci..20129444 (DOI: 10.1039/c2ee22657j)
  106. Improving the efficiency of dye‐sensitized solar cell via tuning the Au plasmons inlaid TiO2 nanotube array photoanode J. Appl. Electrochem..20181139 (DOI: 10.1007/s10800-018-1220-4)
  107. Applied Energy.2012. (DOI: 10.1016/j.apenergy.2011.10.038)