Generalized size scaling of metabolic rates based on single-cell measurements with freshwater phytoplankton release_rev_04906e5b-df95-43df-8d21-e9e07e238073

by Silvia Zaoli, Andrea Giometto, Emilio Marañón, Stéphane Escrig, Anders Meibom, Arti Ahluwalia, Roman Stocker, Amos Maritan, Andrea Rinaldo

References

This release citing other releases
  1. (DOI: 10.3733/hilg.v06n11p315)
  2. (DOI: 10.1242/jeb.01588)
  3. (DOI: 10.1126/science.aac6284)
  4. (DOI: 10.1073/pnas.1708376114)
  5. (DOI: 10.1890/03-9000)
  6. Allometric scaling in-vitro Sci. Rep..201242113 (DOI: 10.1038/srep42113)
  7. The size dependence of phytoplankton growth rates: A trade-off between nutrient uptake and metabolism Am. Nat..2018179
  8. P. McMahon , J. T. Bonner , On Size and Life (Scientific American, 1983).
  9. R. H. Peters , The Ecological Implications of Body Size (Cambridge University Press, 1986).
  10. The predominance of quarter-power scaling in biology Funct. Ecol..2004257 (DOI: 10.1111/j.0269-8463.2004.00856.x)
  11. (DOI: 10.1126/science.276.5309.122)
  12. (DOI: 10.1038/20144)
  13. J. H. Brown , Macroecology (University of Chicago Press, Chicago, IL, 1995).
  14. (DOI: 10.1006/jtbi.2000.2238)
  15. (DOI: 10.1017/s1464793105006834)
  16. (DOI: 10.1111/ele.12052)
  17. (DOI: 10.1146/annurev-marine-010814-015955)
  18. (DOI: 10.1111/brv.12115)
  19. (DOI: 10.1038/nature08920)
  20. (DOI: 10.1073/pnas.1401336111)
  21. (DOI: 10.1111/j.1461-0248.2012.01860.x)
  22. (DOI: 10.1016/bs.aecr.2015.02.001)
  23. Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments Nat. Microbiol..201616055 (DOI: 10.1038/nmicrobiol.2016.55)
  24. Cell size, photosynthesis and the package effect: An artificial selection approach New Phytol..2018449 (DOI: 10.1111/nph.15163)
  25. (DOI: 10.1242/jeb.166876)
  26. (DOI: 10.1126/science.1114383)
  27. (DOI: 10.3389/fmicb.2015.00243)
  28. Single-cell study links metabolism with nutrient signaling and reveals sources of variability BMC Syst. Biol..201759 (DOI: 10.1186/s12918-017-0435-z)
  29. (DOI: 10.1073/pnas.0704108104)
  30. Linking the global carbon cycle to individual metabolism J. Exp. Biol..2005202
  31. (DOI: 10.1073/pnas.1301552110)
  32. (DOI: 10.1007/bf00396282)
  33. (DOI: 10.1073/pnas.0902005106)
  34. What limits photosynthetic energy conversion efficiency in nature? Lessons from the oceans Proc. Natl. Acad. Sci. U.S.A..20176696
  35. High single cell diversity in carbon and nitrogen assimilation by a chain-forming diatom across a century: Single cell diversity in skeletonema Environ. Microbiol..201912941 (DOI: 10.1111/1462-2920.14434)
  36. A measure of data collapse for scaling J. Phys. A Math. Gen..20016375 (DOI: 10.1088/0305-4470/34/33/302)
  37. Phytoplankton in a changing world: Cell size and elemental stoichiometry J. Plankton Res..2009119 (DOI: 10.1093/plankt/fbp098)
  38. S. W. Chisholm , "Phytoplankton size" in Primary Productivity and Biogeochemical Cycles in the Sea, P. G. Falkowski , A. D. Woodhead , K. Vivirito , Eds. (Springer US, Boston, MA, 1992), pp. 213–237. (DOI: 10.1007/978-1-4899-0762-2_12)
  39. (DOI: 10.1006/jtbi.2000.2020)
  40. (DOI: 10.1093/plankt/fbi148)
  41. (DOI: 10.1111/j.1462-2920.2009.02046.x)
  42. (DOI: 10.1126/science.1061967)
  43. (DOI: 10.1073/pnas.0902080106)
  44. Rates of growth, respiration and photosynthesis of unicellular algae as related to cell size J. Phycol..1976135
  45. An improved energy–dispersive X–ray microanalysis method for analyzing simultaneously carbon, nitrogen, oxygen, phosphorus, sulfur, and other cation and anion concentrations in single natural marine microplankton cells Limnol. Oceanogr. Methods.2012666 (DOI: 10.4319/lom.2012.10.666)
  46. Temperature, resources, and phytoplankton size structure in the ocean Limnol. Oceanogr..20121266 (DOI: 10.4319/lo.2012.57.5.1266)
  47. An allometry-based approach for understanding forest structure, predicting tree-size distribution and assessing the degree of disturbance Proc. R. Soc. Lond. B Biol. Sci..20122375
  48. On the probabilistic nature of the species-area relation J. Theor. Biol..2019391 (DOI: 10.1016/j.jtbi.2018.11.032)
  49. (DOI: 10.1111/j.1751-908x.2013.00239.x)
  50. I. Olenina , "Biovolumes and size-classes of phytoplankton in the Baltic Sea" in Helcom Baltic Sea Environment Proceedings No. 106 (Helsinki Commission, 2006), pp. 144.
  51. Estimating phytoplankton carbon from microscopic counts: An application for riverine systems Hydrobiologia.200075 (DOI: 10.1023/a:1004161928957)