Harmonic univalent functions defined by q-calculus operators release_pyjyntbhc5aabolqanzrsgje2i

by Jay M. Jahangiri

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 13 of 13 references (in 91ms)
[b0]

via grobid
F. H. Jackson, q-Difference Equations, Amer. J. Math., 32(4) (1910), 305-314. MR1506108
[b1]

via grobid
G. E. Andrews, R. Askey and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 71, 1999. MR1688958
[b2]

via grobid
M. E. H. Ismail, E. Merkes and D. Styer, A gerneralization of starlike functions, Complex Variables Theory Appl., 14 (1-4) (1990), 77-84. MR1048708
[b3]

via grobid
S. D. Purohit and R. K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand., 109 (1) (2011), 55-70. MR2831147
[b4]

via grobid
S. Kanas and D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca., 64(5) (2014), 1183-1196. MR3277846
[b5]

via grobid
S. Agrawal, Coefficient estimates for some classes of functions associated with q-function theory, Bull. Aust. Math. Soc. 95 (3) (2017), 446-456. MR3646797
[b6]

via fuzzy
On a class of analytic functions related to conic domains involving q-calculus
M. Govindaraj, S. Sivasubramanian
2017   Analysis Mathematica
doi:10.1007/s10476-017-0206-5 
[b7]

via grobid
G. S. Salagean, Subclasses of univalent functions, Complex Analysis -Fifth Romanian Finish Seminar, Bucharest, 1 (1981), 362-372. MR0738107
[b8]

via grobid
J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. AI Math., 9 (1984), 3-25. MR0752388
[b9]

via grobid
H. Lewy, On the non-vanishing of the Jacobian in a certain one-to-one mappings, Bull. Amer. Math. Soc., 42(10) (1936), 689-692. MR1563404
[b10]

via fuzzy
Harmonic Functions Starlike in the Unit Disk
Jay M Jahangiri
1999   Journal of Mathematical Analysis and Applications
doi:10.1006/jmaa.1999.6377 
web.archive.org [PDF]
[b11]

via grobid
J. M. Jahangiri, G. Murugusundaramoorthy and K. Vijaya, Salagean-type harmonic univalent functions, Southwest J. Pure Appl. Math., 2 (2002), 77-82. MR1953964
[b12]

via grobid
Mathematical Sciences, Kent State University, Kent, Ohio, U.S.A. E-mail address: jjahangi@kent.edu; http://www.kent.edu/math/profile/jay-jahangiri