Flow-Tube Investigations of Hypergolic Reactions of a Dicyanamide Ionic Liquid Via Tunable Vacuum Ultraviolet Aerosol Mass Spectrometry release_pvuh2prv2bcmnc4mznjn5bszty

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 32 references (in 196ms)
[b0]

via fuzzy
Hydroxylammonium nitrate (HAN)-based green propellant as alternative energy resource for potential hydrazine substitution: From lab scale to pilot plant scale-up
Rachid Amrousse, Toshiyuki Katsumi, Nobuyuki Azuma, Keiichi Hori
2017   Combustion and Flame
doi:10.1016/j.combustflame.2016.11.011 
[b1]

via grobid
David, L. Space.com GPIM. http://www.space.com/32567-nasa- green-propellant-mission-gpim.html (accessed January 12, 2017).
[b2]

via fuzzy
Thermal decomposition of energetic materials. 8. Evidence of an oscillating process during the high-rate thermolysis of hydroxylammonium nitrate, and comments on the interionic interactions
J. T. Cronin, T. B. Brill
1986   The Journal of Physical Chemistry
doi:10.1021/j100273a040 
[b3]

via fuzzy
Rapid-Scan Infrared/Thermal Profiling Studies Of The Thermal Decomposition Of Selected Nitrate Salts Of Interest For Emulsified Propellants
Thomas B. Brill, Thomas P. Russell, Joseph Flanagan
1988   Propulsion  unpublished
doi:10.1117/12.943751 
[b4]

via fuzzy
Thermal decomposition of energetic materials 29—The fast thermal decomposition characteristics of a multicomponent material: liquid gun propellant 1845
J.T. Cronin, T.B. Brill
1988   Combustion and Flame
doi:10.1016/0010-2180(88)90088-0 
[b5]

via grobid
Brill, T. B.; Spohn, P. D.; Cronin, J. T. Thermal Decomposition of Energetic Materials 32. On the Instantaneous Molecular Nature of Aqueous Liquid Gun Propellants at High Temperature and Pressure Before Thermal Decomposition. J. Energ. Mater. 1990, 8, 75−84.
[b6]

via grobid
Schoppelrei, J. W.; Brill, T. B. Spectroscopy of Hydrothermal Reactions 7. Kinetics of Aqueous [NH 3 OH]NO 3 at 463−523 K and 27.5 MPa by Infrared Spectroscopy. J. Phys. Chem. A 1997, 101, 8593− 8596.
[b7]

via grobid
Oxley, J. C.; Brower, K. R. Thermal Decomposition Of Hydroxylamine Nitrate. Proc. SPIE 1988, 63−70.
[b8]

via fuzzy
Combustion Chemistry of HAN, TEAN, and XM46
YOUNG JOO LEE, THOMAS A. LITZINGER
1999   Combustion Science and Technology
doi:10.1080/00102209908924180 
[b9]

via fuzzy
Thermal decomposition of han-based liquid propellants
HyungSik Lee, Thomas A Litzinger
2001   Combustion and Flame
doi:10.1016/s0010-2180(01)00322-4 
[b10]

via fuzzy
Chemical kinetic study of HAN decomposition
HyungSik Lee, Thomas A Litzinger
2003   Combustion and Flame
doi:10.1016/s0010-2180(03)00157-3 
[b11]

via grobid
Kappenstein, C.; Courtheóux, L.; Eloirdi, R.; Rossignol, S.; Duprez, D.; Pillet, N. Catalytic Decomposition of HAN−Water Binary Mixtures, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Joint Propulsion Conferences, American Institute of Aeronautics and Astronautics: Reston, VA, 2002.
[b12]

via fuzzy
Thermal and catalytic decomposition of HNF and HAN liquid ionic as propellants
Laurence Courthéoux, Dan Amariei, Sylvie Rossignol, Charles Kappenstein
2006   Applied Catalysis B: Environmental
doi:10.1016/j.apcatb.2005.07.016 
[b13]

via grobid
Amariei, D.; Courtheóux, L.; Rossignol, S.; Kappenstein, C. Catalytic and Thermal Decomposition of Ionic Liquid Monopropel- lants Using a Dynamic Reactor: Comparison of Powder and Sphere- Shaped Catalysts. Chem. Eng. Process. 2007, 46, 165−174.
[b14]

via fuzzy
Adsorption and decomposition of monopropellant molecule HAN on Pd(100) and Ir(100) surfaces: A DFT study
Sourav Banerjee, Sharath A. Shetty, M.N. Gowrav, Charlie Oommen, Atanu Bhattacharya
2016   Surface Science
doi:10.1016/j.susc.2016.05.005 
[b15]

via grobid
Oommen, C.; Rajaraman, S.; Chandru, R. A.; Rajeev, R. Catalytic Decomposition of Hydroxylammonium Nitrate Monopro- pellant. IPCBEE 2011, 10, 205−209.
[b16]

via grobid
Amrousse, R.; Hori, K.; Fetimi, W.; Farhat, K. HAN and ADN as Liquid Ionic Monopropellants: Thermal and Catalytic Decom- position Processes. Appl. Catal., B 2012, 127, 121−128.
[b17]

via fuzzy
New HAN-based mixtures for reaction control system and low toxic spacecraft propulsion subsystem: Thermal decomposition and possible thruster applications
Rachid Amrousse, Toshiyuki Katsumi, Noboru Itouyama, Nobuyuki Azuma, Hideshi Kagawa, Keigo Hatai, Hirohide Ikeda, Keiichi Hori
2015   Combustion and Flame
doi:10.1016/j.combustflame.2015.03.026 
[b18]

via fuzzy
Performance and deactivation of Ir-based catalyst during hydroxylammonium nitrate catalytic decomposition
Rachid Amrousse, Toshiyuki Katsumi, Yosui Niboshi, Nobuyuki Azuma, Ahmed Bachar, Keiichi Hori
2013   Applied Catalysis A : General
doi:10.1016/j.apcata.2012.11.038 
[b19]

via grobid
Koh, C. J.; Liu, C.-L.; Harmon, C. W.; Strasser, D.; Golan, A.; Kostko, O.; Chambreau, S. D.; Vaghjiani, G. L.; Leone, S. R. Soft The Journal of Physical Chemistry Letters Letter DOI: 10.1021/acs.jpclett.7b00672
[b20]

via grobid
J. Phys. Chem. Lett. 2017, 8, 2126−2130
[b21]

via grobid
Ionization of Thermally Evaporated Hypergolic Ionic Liquid Aerosols. J. Phys. Chem. A 2011, 115, 4630−4635.
[b23]

via grobid
Lias, S. G. Ionization Energy Evaluation. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69;
[b24]

via grobid
Linstrom, P. J.; Mallard, W. G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD; http://webbook.nist.gov (retrieved January 4, 2017).
[b25]

via fuzzy
Tunable Wavelength Soft Photoionization of Ionic Liquid Vapors
Daniel Strasser, Fabien Goulay, Leonid Belau, Oleg Kostko, Christine Koh, Steven D. Chambreau, Ghanshyam L. Vaghjiani, Musahid Ahmed (+ more)
2010   Journal of Physical Chemistry A
doi:10.1021/jp909727f  pmid:19957958 
web.archive.org [PDF]
[b26]

via fuzzy
Photoionization of N2O: Mechanisms of photoionization and ion dissociation
J. Berkowitz, J. H. D. Eland
1977   Journal of Chemical Physics
doi:10.1063/1.435188 
[b27]

via grobid
Petersson, G. A. Complete Basis Set Models for Chemical Reactivity: From the Helium Atom to Enzyme Kinetics. In Quantum- Mechanical Prediction of Thermochemical Data;
[b28]

via grobid
Complete Basis Set Models for Chemical Reactivity: from the Helium Atom to Enzyme Kinetics [chapter]
George A. Petersson
Understanding Chemical Reactivity
doi:10.1007/0-306-47632-0_4 
[b29]

via grobid
Chambreau, S. D.; Boatz, J. A.; Vaghjiani, G. L.; Koh, C.; Kostko, O.; Golan, A.; Leone, S. R. Thermal Decomposition of 1- Ethyl-3-methylimidazolium Bromide Ionic Liquid. J. Phys. Chem. A 2012, 116, 5867−5876.
[b30]

via fuzzy
Thermal Decomposition Mechanisms of Alkylimidazolium Ionic Liquids with Cyano-Functionalized Anions
Steven D. Chambreau, Adam C. Schenk, Anna J. Sheppard, Gregory R. Yandek, Ghanshyam L. Vaghjiani, John Maciejewski, Christine J. Koh, Amir Golan (+ more)
2014   Journal of Physical Chemistry A
doi:10.1021/jp5095855  pmid:25381899 
web.archive.org [PDF]
Showing 1 - 30 of 32 references  next »