Bacterial biofilm treatment and in situ antimicrobial coatings for orthopaedic implant retention surgery release_ppxxqbqy7fgtnkpqzi3p3ropye

by Anh Hien Tran

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 225 references (in 1888ms)
[b0]

via fuzzy
Successful treatment of biofilm infections using shock waves combined with antibiotic therapy
Divya Prakash Gnanadhas, Monalisha Elango, S. Janardhanraj, C. S. Srinandan, Akshay Datey, Richard A. Strugnell, Jagadeesh Gopalan, Dipshikha Chakravortty
2015   Scientific Reports
doi:10.1038/srep17440  pmcid:PMC4674795  pmid:26658706 
web.archive.org [PDF]
[b1]

via grobid
Gristina AG. Biomaterial-centered infection: microbial adhesion versus tissue integration. Science. 1987;237(4822):1588.
[b2]

via fuzzy
When nanoparticles meet biofilms—interactions guiding the environmental fate and accumulation of nanoparticles
Kaoru Ikuma, Alan W. Decho, Boris L. T. Lau
2015   Frontiers in Microbiology
doi:10.3389/fmicb.2015.00591  pmcid:PMC4468922  pmid:26136732 
web.archive.org [PDF]
[b3]

via fuzzy
Nanomaterials for the Treatment of Bacterial Biofilms
Li-Sheng Wang, Akash Gupta, Vincent M. Rotello
2015   ACS Infectious Diseases
doi:10.1021/acsinfecdis.5b00116  pmcid:PMC5848070  pmid:27622944 
[b4]

via fuzzy
A Fatty Acid Messenger Is Responsible for Inducing Dispersion in Microbial Biofilms
D. G. Davies, C. N. H. Marques
2008   Journal of Bacteriology
doi:10.1128/jb.01214-08  pmcid:PMC2648214  pmid:19074399 
web.archive.org [PDF]
[b5]

via grobid
Horev B, Klein MI, Hwang G, et al. pH-Activated Nanoparticles for Controlled Topical Delivery of Farnesol To Disrupt Oral Biofilm Virulence. ACS nano. 2015;9(3):2390-2404.
[b6]

via grobid
Estellés A, Woischnig A-K, Liu K, et al. A high-affinity native human antibody disrupts biofilm from Staphylococcus aureus bacteria and potentiates antibiotic efficacy in a mouse implant infection model. Antimicrobial Agents and Chemotherapy. 2016;60(4):2292.
[b7]

via fuzzy
Enzymatic degradation of in vitro Staphylococcus aureus biofilms supplemented with human plasma
Nancy Millenbaugh, Chase Watters, Tarea Burton, Dickson Kirui
2016   Infection and Drug Resistance
doi:10.2147/idr.s103101  pmcid:PMC4854256  pmid:27175088 
web.archive.org [PDF]
[b8]

via fuzzy
Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections
S. Hogan, M. Zapotoczna, N.T. Stevens, H. Humphreys, J.P. O'Gara, E. O'Neill
2017   Journal of Hospital Infection
doi:10.1016/j.jhin.2017.02.008  pmid:28351512 
[b9]

via grobid
Mizan MFR, Jahid IK, Ha S-D. Microbial biofilms in seafood: A food-hygiene challenge. Food Microbiology. 2015;49:41-55.
[b10]

via fuzzy
Quality Standard for Antimicrobial Prophylaxis in Surgical Procedures
E. P. Dellinger, P. A. Gross, T. L. Barrett, P. J. Krause, W. J. Martone, J. E. McGowan, R. L. Sweet, R. P. Wenzel
1994   Clinical Infectious Diseases
doi:10.1093/clinids/18.3.422  pmid:8011827 
web.archive.org [PDF]
[b11]

via grobid
Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR. Guideline for Prevention of Surgical Site Infection, 1999. Infection Control & Hospital Epidemiology. 1999;20(4):247-280.
[b12]

via fuzzy
Clinical practice guidelines for antimicrobial prophylaxis in surgery
D. W. Bratzler, E. P. Dellinger, K. M. Olsen, T. M. Perl, P. G. Auwaerter, M. K. Bolon, D. N. Fish, L. M. Napolitano (+ more)
2013   American Journal of Health-System Pharmacy
doi:10.2146/ajhp120568  pmid:23327981 
web.archive.org [PDF]
[b13]

via fuzzy
ANTIBIOTIC-LOADED BONE CEMENT FOR INFECTION PROPHYLAXIS IN TOTAL JOINT REPLACEMENT
WILLIAM A. JIRANEK, ARLEN D. HANSSEN, A. SETH GREENWALD
2006   Journal of Bone and Joint Surgery. American volume
doi:10.2106/00004623-200611000-00024 
web.archive.org [PDF]
[b14]

via grobid
Johnson B, Starks I, Bancroft G, Roberts PJ. The effect of care bundle development on surgical site infection after hemiarthroplasty: An 8-year review. Journal of Trauma and Acute Care Surgery. 2012;72(5).
[b15]

via grobid
Bratzler DW, Dellinger EP, Olsen KM, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. American Journal of Health-System Pharmacy. 2013;70(3):195-283.
[b16]

via fuzzy
Biomaterial-centered infection: microbial adhesion versus tissue integration
A. Gristina
1987   Science
doi:10.1126/science.3629258  pmid:3629258 
[b17]

via fuzzy
Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy
Peter Tenke, Claus R Riedl, Gwennan Ll Jones, Gareth J Williams, David Stickler, Elisabeth Nagy
2004   International Journal of Antimicrobial Agents
doi:10.1016/j.ijantimicag.2003.12.007  pmid:15037330 
web.archive.org [PDF]
[b18]

via fuzzy
Antimicrobial surface functionalization of plastic catheters by silver nanoparticles
D. Roe, B. Karandikar, N. Bonn-Savage, B. Gibbins, J.-B. Roullet
2008   Journal of Antimicrobial Chemotherapy
doi:10.1093/jac/dkn034  pmid:18305203 
[b19]

via fuzzy
Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms
Kateryna Bazaka, Mohan V. Jacob, Russell J. Crawford, Elena P. Ivanova
2012   Applied Microbiology and Biotechnology
doi:10.1007/s00253-012-4144-7  pmid:22618687 
[b20]

via fuzzy
Antibacterial coating of implants: are we missing something?
C. L. Romanò, H. Tsuchiya, I. Morelli, A. G. Battaglia, L. Drago
2019   Bone & Joint Research
doi:10.1302/2046-3758.85.bjr-2018-0316  pmcid:PMC6548976  pmid:31214332 
web.archive.org [PDF]
[b21]

via grobid
Martínez-Pérez M, Conde A, Arenas M-A, et al. The "Race for the Surface" experimentally studied: In vitro assessment of Staphylococcus spp. adhesion and preosteoblastic cells integration to doped Ti-6Al-4V alloys. Colloids and Surfaces B: Biointerfaces. 2019;173:876-883.
[b22]

via fuzzy
A novel co-culture model of murine K12 osteosarcoma cells andS. aureuson common orthopedic implant materials: 'the race to the surface' studiedin vitro
David B. McConda, Jonathan M. Karnes, Therwa Hamza, Brock A. Lindsey
2016   Biofouling (Print)
doi:10.1080/08927014.2016.1172572  pmid:27142312 
[b23]

via grobid
Zaatreh S, Wegner K, Strauß M, et al. Co-culture of S. epidermidis and human osteoblasts on implant surfaces: an advanced in vitro model for implant- associated infections. PLoS One. 2016;11(3):e0151534.
[b24]

via grobid
Tran HA, Tran HM, Tran PA. Antibiotic resistance of S. aureus on a 'bifunctional' surface: an in vitro coculture study. Materials Letters. 2020;In Press.
[b25]

via grobid
Tran N, Tran PA. Nanomaterial-Based Treatments for Medical Device- Associated Infections. ChemPhysChem. 2012;13(10):2481-2494.
[b26]

via fuzzy
Reducing implant-related infections: active release strategies
Evan M. Hetrick, Mark H. Schoenfisch
2006   Chemical Society Reviews
doi:10.1039/b515219b  pmid:16936926 
[b27]

via fuzzy
Re-Infection Outcomes Following One- And Two-Stage Surgical Revision of Infected Knee Prosthesis: A Systematic Review and Meta-Analysis
Setor K. Kunutsor, Michael R. Whitehouse, Erik Lenguerrand, Ashley W. Blom, Andrew D. Beswick, None, Heiner Baur
2016   PLoS ONE
doi:10.1371/journal.pone.0151537  pmcid:PMC4788419  pmid:26967645 
web.archive.org [PDF]
[b28]

via fuzzy
A systematic review of the evidence for single stage and two stage revision of infected knee replacement
James PM Masters, Nicholas A Smith, Pedro Foguet, Mike Reed, Helen Parsons, Andrew P Sprowson
2013   BMC Musculoskeletal Disorders
doi:10.1186/1471-2474-14-222  pmcid:PMC3734185  pmid:23895421 
web.archive.org [PDF]
[b29]

via grobid
Qasim SN, Swann A, Ashford R. The DAIR (debridement, antibiotics and implant retention) procedure for infected total knee replacement -a literature review. SICOT J. 2017;3:2-2.
Showing 1 - 30 of 225 references  next »