abstracts[] |
{'sha1': '2381acf187470cd83b7c174e0b3365971c1a8ffe', 'content': 'Unexpected recommender system constitutes an important tool to tackle the\nproblem of filter bubbles and user boredom, which aims at providing unexpected\nand satisfying recommendations to target users at the same time. Previous\nunexpected recommendation methods only focus on the straightforward relations\nbetween current recommendations and user expectations by modeling\nunexpectedness in the feature space, thus resulting in the loss of accuracy\nmeasures in order to improve unexpectedness performance. Contrast to these\nprior models, we propose to model unexpectedness in the latent space of user\nand item embeddings, which allows to capture hidden and complex relations\nbetween new recommendations and historic purchases. In addition, we develop a\nnovel Latent Closure (LC) method to construct hybrid utility function and\nprovide unexpected recommendations based on the proposed model. Extensive\nexperiments on three real-world datasets illustrate superiority of our proposed\napproach over the state-of-the-art unexpected recommendation models, which\nleads to significant increase in unexpectedness measure without sacrificing any\naccuracy metric under all experimental settings in this paper.', 'mimetype': 'text/plain', 'lang': 'en'}
|
container |
|
container_id |
|
contribs[] |
{'index': 0, 'creator_id': None, 'creator': None, 'raw_name': 'Pan Li', 'given_name': None, 'surname': None, 'role': 'author', 'raw_affiliation': None, 'extra': None}
{'index': 1, 'creator_id': None, 'creator': None, 'raw_name': 'Alexander Tuzhilin', 'given_name': None, 'surname': None, 'role': 'author', 'raw_affiliation': None, 'extra': None}
|
ext_ids |
{'doi': None, 'wikidata_qid': None, 'isbn13': None, 'pmid': None, 'pmcid': None, 'core': None, 'arxiv': '2007.13280v1', 'jstor': None, 'ark': None, 'mag': None, 'doaj': None, 'dblp': None, 'oai': None, 'hdl': None}
|
files[] |
{'state': 'active', 'ident': '22g2f2mx6vg77lffpvhz7uueoe', 'revision': 'd3f9d6e1-4e6d-4720-b42b-74db9e56296c', 'redirect': None, 'extra': None, 'edit_extra': None, 'size': 7321178, 'md5': 'e5eb44f3657d535c373c4882377707e8', 'sha1': '455c4fad47ce2f02a9e83cab27d747605b04128e', 'sha256': '9521d39b9d6340fb84ea98892d6fefa42a005201a98ab926fd69cebb5d0ab004', 'urls': [{'url': 'https://arxiv.org/pdf/2007.13280v1.pdf', 'rel': 'repository'}, {'url': 'https://web.archive.org/web/20200929233028/https://arxiv.org/pdf/2007.13280v1.pdf', 'rel': 'webarchive'}], 'mimetype': 'application/pdf', 'content_scope': None, 'release_ids': ['oxnronmcp5bm7h5sllm3axkryu'], 'releases': None}
|
filesets |
[]
|
issue |
|
language |
en
|
license_slug |
ARXIV-1.0
|
number |
|
original_title |
|
pages |
|
publisher |
|
refs |
[]
|
release_date |
2020-07-27
|
release_stage |
submitted
|
release_type |
article
|
release_year |
2020
|
subtitle |
|
title |
Latent Unexpected Recommendations
|
version |
v1
|
volume |
|
webcaptures |
[]
|
withdrawn_date |
|
withdrawn_status |
|
withdrawn_year |
|
work_id |
3ifdtpo52zcdvfpvqp53o3zo5u
|