Multi-branch Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation release_op73qqgbqfhitieevpppfgvl4i

by Shahab Aslani, Michael Dayan, Loredana Storelli, Massimo Filippi, Vittorio Murino, Maria A Rocca, Diego Sona

Released as a article .

2019  

Abstract

In this paper, we present an automated approach for segmenting multiple sclerosis (MS) lesions from multi-modal brain magnetic resonance images. Our method is based on a deep end-to-end 2D convolutional neural network (CNN) for slice-based segmentation of 3D volumetric data. The proposed CNN includes a multi-branch downsampling path, which enables the network to encode information from multiple modalities separately. Multi-scale feature fusion blocks are proposed to combine feature maps from different modalities at different stages of the network. Then, multi-scale feature upsampling blocks are introduced to upsize combined feature maps to leverage information from lesion shape and location. We trained and tested the proposed model using orthogonal plane orientations of each 3D modality to exploit the contextual information in all directions. The proposed pipeline is evaluated on two different datasets: a private dataset including 37 MS patients and a publicly available dataset known as the ISBI 2015 longitudinal MS lesion segmentation challenge dataset, consisting of 14 MS patients. Considering the ISBI challenge, at the time of submission, our method was amongst the top performing solutions. On the private dataset, using the same array of performance metrics as in the ISBI challenge, the proposed approach shows high improvements in MS lesion segmentation compared with other publicly available tools.
In text/plain format

Archived Files and Locations

application/pdf  2.7 MB
file_nestuhgqtrh7vmkv3kjvibj4ei
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article
Stage   accepted
Date   2019-04-08
Version   v4
Language   en ?
arXiv  1811.02942v4
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: acff5995-9cd9-4f0c-872c-d786736593d6
API URL: JSON