Deep invariant networks with differentiable augmentation layers release_ntcup2znqzgfven44ty3fe3bbe

by Cédric Rommel, Thomas Moreau, Alexandre Gramfort

Released as a article .

2022  

Abstract

Designing learning systems which are invariant to certain data transformations is critical in machine learning. Practitioners can typically enforce a desired invariance on the trained model through the choice of a network architecture, e.g. using convolutions for translations, or using data augmentation. Yet, enforcing true invariance in the network can be difficult, and data invariances are not always known a piori. State-of-the-art methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems, which are complex to solve and often computationally demanding. In this work we investigate new ways of learning invariances only from the training data. Using learnable augmentation layers built directly in the network, we demonstrate that our method is very versatile. It can incorporate any type of differentiable augmentation and be applied to a broad class of learning problems beyond computer vision. We provide empirical evidence showing that our approach is easier and faster to train than modern automatic data augmentation techniques based on bilevel optimization, while achieving comparable results. Experiments show that while the invariances transferred to a model through automatic data augmentation are limited by the model expressivity, the invariance yielded by our approach is insensitive to it by design.
In text/plain format

Archived Content

There are no accessible files associated with this release. You could check other releases for this work for an accessible version.

"Dark" Preservation Only
Save Paper Now!

Know of a fulltext copy of on the public web? Submit a URL and we will archive it

Type  article
Stage   submitted
Date   2022-02-04
Version   v1
Language   en ?
arXiv  2202.02142v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: ca563314-2196-40e4-bc2f-3bf9c9168441
API URL: JSON