P values in display items are ubiquitous and almost invariably significant: A survey of top science journals release nmv2eplmqnasxhcqvap3abzh2e

by Ioana Alina Cristea, John P. A. Ioannidis

Published in PLoS ONE by Public Library of Science (PLoS)
ISSN-L 1932-6203
Volume 13
Page(s) e0197440
Release Date 2018-05-15
Publisher Public Library of Science (PLoS)
Primary Language en (lookup)
All Contributors (3)


Extra Metadata (raw JSON)

crossref.license [{'delay-in-days': 0, 'content-version': 'vor', 'URL': 'http://creativecommons.org/licenses/by/4.0/', 'start': '2018-05-15T00:00:00Z'}]
crossref.funder [{'award': [], 'doi-asserted-by': 'publisher', 'name': 'Laura and John Arnold Foundation', 'DOI': '10.13039/100009827'}, {'name': 'Sue and Bob O’Donnell', 'award': []}]
crossref.type journal-article

Known Files and URLs

application/pdf  1.4 MB
web.archive.org (webarchive)
journals.plos.org (publisher)


This release citing other releases
  1. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations European Journal of Epidemiology.2016337 (DOI: 10.1007/s10654-016-0149-3)
  2. McShane BB, Gal D, Gelman A, Robert C, Tackett JL. Abandon Statistical Significance 2017 12/13/2017. Available from: https://arxiv.org/abs/1709.07588
  3. The proposal to lower p value thresholds to .005 JAMA.2018
  4. The ASA's Statement on p-Values: Context, Process, and Purpose The American Statistician.2016129 (DOI: 10.1080/00031305.2016.1154108)
  5. Toward evidence-based medical statistics. 1: The p value fallacy Annals of Internal Medicine.1999995 (DOI: 10.7326/0003-4819-130-12-199906150-00008)
  6. A dirty dozen: twelve p-value misconceptions Seminars in hematology.2008135 (DOI: 10.1053/j.seminhematol.2008.04.003)
  7. P values and statistical practice Epidemiology (Cambridge, Mass).201369 (DOI: 10.1097/ede.0b013e31827886f7)
  8. The Failure of Null Hypothesis Significance Testing When Studying Incremental Changes, and What to Do About It Personality and Social Psychology Bulletin.2017
  9. When Null Hypothesis Significance Testing Is Unsuitable for Research: A Reassessment Frontiers in human neuroscience.2017390 (DOI: 10.3389/fnhum.2017.00390)
  10. That confounded P-value revisited Journal of Clinical Epidemiology.20111047 (DOI: 10.1016/j.jclinepi.2011.03.004)
  11. The ongoing tyranny of statistical significance testing in biomedical research Eur J Epidemiol.2010225 (DOI: 10.1007/s10654-010-9440-x)
  12. Editorial Basic and Applied Social Psychology.2015 (DOI: 10.1080/01973533.2015.1012991)
  13. Senn SJ. P value wars. 2017.
  14. Evolution of reporting p values in the biomedical literature, 1990–2015 JAMA.20161141 (DOI: 10.1001/jama.2016.1952)
  15. The intriguing evolution of effect sizes in biomedical research over time: smaller but more often statistically significant GigaScience.2017
  16. Genome-wide significance for dense SNP and resequencing data Genetic epidemiology.2008179 (DOI: 10.1002/gepi.20292)
  17. Estimating genome-wide significance for whole-genome sequencing studies Genetic epidemiology.2014281 (DOI: 10.1002/gepi.21797)
  18. Redefine statistical significance Nature Human Behaviour.2018 (DOI: 10.1038/s41562-017-0189-z)
  19. Justify your alpha Nature Human Behaviour.2018168 (DOI: 10.1038/s41562-018-0311-x)
  20. Remove, rather than redefine, statistical significance Nature Human Behaviour.2018 (DOI: 10.1038/s41562-017-0224-0)
  21. Estimation of significance thresholds for genomewide association scans Genetic epidemiology.2008227 (DOI: 10.1002/gepi.20297)
  22. Multiple testing corrections for imputed SNPs Genetic epidemiology.2011154 (DOI: 10.1002/gepi.20563)
  23. Meta-analysis of genetic association studies and adjustment for multiple testing of correlated SNPs and traits Genetic epidemiology.2010739 (DOI: 10.1002/gepi.20538)
  24. Best (but oft-forgotten) practices: the multiple problems of multiplicity-whether and how to correct for many statistical tests The American journal of clinical nutrition.2015721 (DOI: 10.3945/ajcn.115.113548)
  25. Statistical significance for genomewide studies Proceedings of the National Academy of Sciences.20039440 (DOI: 10.1073/pnas.1530509100)
  26. Resampling-based multiple comparison procedure with application to point-wise testing with functional data Environmental and ecological statistics.201545 (DOI: 10.1007/s10651-014-0282-7)
  27. Rapid and accurate multiple testing correction and power estimation for millions of correlated markers PLoS genetics.2009e1000456 (DOI: 10.1371/journal.pgen.1000456)
  28. Rapid and robust resampling-based multiple-testing correction with application in a genome-wide expression quantitative trait loci study Genetics.20121511 (DOI: 10.1534/genetics.111.137737)
  29. Four reasons to prefer Bayesian analyses over significance testing Psychonomic bulletin & review.2017
  30. Bayesian perspectives for epidemiological research: I. Foundations and basic methods International journal of epidemiology.2006765 (DOI: 10.1093/ije/dyi312)
  31. The application of Bayesian hierarchical models to quantify individual diet specialization Ecology.20171535 (DOI: 10.1002/ecy.1802)
  32. A Bayesian heteroscedastic GLM with application to fMRI data with motion spikes NeuroImage.2017354 (DOI: 10.1016/j.neuroimage.2017.04.069)
  33. Application of a Bayesian non-linear model hybrid scheme to sequence data for genomic prediction and QTL mapping BMC genomics.2017618 (DOI: 10.1186/s12864-017-4030-x)
  34. A simulation study of the strength of evidence in the recommendation of medications based on two trials with statistically significant results PloS one.2017e0173184 (DOI: 10.1371/journal.pone.0173184)
  35. Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications Psychonomic bulletin & review.2017
  36. A Bayesian model that jointly considers comparative effectiveness research and patients' preferences may help inform GRADE recommendations: An application to rheumatoid arthritis treatment recommendations J Clin Epidemiol.2017
  37. Bayes factor design analysis: Planning for compelling evidence Psychonomic bulletin & review.2017
  38. The distribution of P-values in medical research articles suggested selective reporting associated with statistical significance J Clin Epidemiol.201770 (DOI: 10.1016/j.jclinepi.2017.04.003)
  39. A peculiar prevalence of p values just below .05 The Quarterly Journal of Experimental Psychology.20122271 (DOI: 10.1080/17470218.2012.711335)
  40. An estimate of the science-wise false discovery rate and application to the top medical literature Biostatistics.2014 (DOI: 10.1093/biostatistics/kxt007)
  41. The Extent and Consequences of P-Hacking in Science PLOS Biology.2015e1002106 (DOI: 10.1371/journal.pbio.1002106)
  42. A surge of p-values between 0.041 and 0.049 in recent decades (but negative results are increasing rapidly too) PeerJ.2015e733 (DOI: 10.7717/peerj.733)
  43. False-positive psychology: undisclosed flexibility in data collection and analysis allows presenting anything as significant Psychological science.20111359 (DOI: 10.1177/0956797611417632)
  44. Statistical inference in abstracts of major medical and epidemiology journals 1975–2014: a systematic review Eur J Epidemiol.201721 (DOI: 10.1007/s10654-016-0211-1)
  45. Discussion: Why "An estimate of the science-wise false discovery rate and application to the top medical literature" is false Biostatistics.201428 (DOI: 10.1093/biostatistics/kxt036)
  46. The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial Biometrika.1934404 (DOI: 10.1093/biomet/26.4.404)
  47. Meta-analysis of prevalence Journal of Epidemiology and Community Health.2013974 (DOI: 10.1136/jech-2013-203104)
  48. Meta-analysis in clinical trials Controlled clinical trials.1986177 (DOI: 10.1016/0197-2456(86)90046-2)
  49. StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC 2017.
  50. Metaprop: a Stata command to perform meta-analysis of binomial data Archives of public health = Archives belges de sante publique.201439 (DOI: 10.1186/2049-3258-72-39)
  51. Negative results are disappearing from most disciplines and countries Scientometrics.2012891 (DOI: 10.1007/s11192-011-0494-7)
  52. P-curve: a key to the file-drawer Journal of experimental psychology General.2014534 (DOI: 10.1037/a0033242)
  53. An analysis of the use of multiple comparison corrections in ophthalmology research Investigative ophthalmology & visual science.20121830 (DOI: 10.1167/iovs.11-8730)
  54. Correcting for multiple-testing in multi-arm trials: is it necessary and is it done? Trials.2014364 (DOI: 10.1186/1745-6215-15-364)
  55. Multiple testing in orthopedic literature: a common problem? BMC research notes.2013374 (DOI: 10.1186/1756-0500-6-374)
  56. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research PLOS Biology.2010e1000412 (DOI: 10.1371/journal.pbio.1000412)
  57. Two years later: journals are not yet enforcing the ARRIVE guidelines on reporting standards for pre-clinical animal studies PLoS Biol.2014e1001756 (DOI: 10.1371/journal.pbio.1001756)
Download Full Text
Type  article-journal
Stage   published
Date   2018-05-15
DOI  10.1371/journal.pone.0197440
PubMed  29763472
PMC  PMC5953482
Wikidata  Q55186690
Container Metadata
Open Access Publication
ISSN-L:  1932-6203
Fatcat Entry
Work Entity
grouping other versions (eg, pre-print) and variants of this release
Fatcat Bits

State is "active". Revision:
As JSON object via API