Infrared Imaging Decision Aid Tools for Diagnosis of Necrotizing Enterocolitis release_n5ccikmfjjfnhjekfqowe2cycu

by Yangyu Shi, University, My

Entity Metadata (schema)

abstracts[] {'sha1': '27dc056b952808cd5765ceb6b25a99b21dd4b810', 'content': 'Neonatal necrotizing enterocolitis (NEC) is one of the most severe digestive tract emergencies in neonates, involving bowel edema, hemorrhage, and necrosis, and can lead to serious complications including death. Since it is difficult to diagnose early, the morbidity and mortality rates are high due to severe complications in later stages of NEC and thus early detection is key to the treatment of NEC. In this thesis, a novel automatic image acquisition and analysis system combining a color and depth (RGB-D) sensor with an infrared (IR) camera is proposed for NEC diagnosis. A design for sensors configuration and a data acquisition process are introduced. A calibration method between the three cameras is described which aims to ensure frames synchronization and observation consistency among the color, depth, and IR images. Subsequently, complete segmentation procedures based on the original color, depth, and IR information are proposed to automatically separate the human body from the background, remove other interfering items, identify feature points on the human body joints, distinguish the human torso and limbs, and extract the abdominal region of interest. Finally, first-order statistical analysis is performed on thermal data collected over the entire extracted abdominal region to compare differences in thermal data distribution between different patient groups. Experimental validation in a real clinical environment is reported and shows encouraging results.', 'mimetype': 'text/plain', 'lang': 'en'}
container
container_id
contribs[] {'index': 0, 'creator_id': None, 'creator': None, 'raw_name': 'Yangyu Shi', 'given_name': 'Yangyu', 'surname': 'Shi', 'role': 'author', 'raw_affiliation': None, 'extra': None}
{'index': None, 'creator_id': None, 'creator': None, 'raw_name': 'University, My', 'given_name': 'My', 'surname': 'University', 'role': 'author', 'raw_affiliation': None, 'extra': {'type': 'DataManager'}}
ext_ids {'doi': '10.20381/ruor-24942', 'wikidata_qid': None, 'isbn13': None, 'pmid': None, 'pmcid': None, 'core': None, 'arxiv': None, 'jstor': None, 'ark': None, 'mag': None, 'doaj': None, 'dblp': None, 'oai': None, 'hdl': None}
files[] {'state': 'active', 'ident': 'ndiefnllu5cbto6yf4bikn5ime', 'revision': '66179bf1-ae5b-4238-9dae-05b84d6cd773', 'redirect': None, 'extra': None, 'edit_extra': None, 'size': 3331188, 'md5': 'd6f8edf6cffba59bdafd3ff6a8ed1bb6', 'sha1': '6a7713441e3caa64aa467865c3021ff8cb597174', 'sha256': '004c3bd87ad320a3519b2a0fc72e5f0e87b34bf981ac4857f70c5d35cddbb18a', 'urls': [{'url': 'https://ruor.uottawa.ca/bitstream/10393/40714/1/Shi_Yangyu_2020_thesis.pdf', 'rel': 'publisher'}, {'url': 'https://web.archive.org/web/20200807114254/https://ruor.uottawa.ca/bitstream/10393/40714/1/Shi_Yangyu_2020_thesis.pdf', 'rel': 'webarchive'}], 'mimetype': 'application/pdf', 'content_scope': None, 'release_ids': ['n5ccikmfjjfnhjekfqowe2cycu'], 'releases': None}
filesets []
issue
language en
license_slug
number
original_title
pages
publisher Université d'Ottawa / University of Ottawa
refs []
release_date 2020-07-09
release_stage published
release_type article-journal
release_year 2020
subtitle
title Infrared Imaging Decision Aid Tools for Diagnosis of Necrotizing Enterocolitis
version
volume
webcaptures []
withdrawn_date
withdrawn_status
withdrawn_year
work_id knjpfb7wkzcztah2rnp5jycz3m
As JSON via API

Extra Metadata (raw JSON)

datacite.resourceType Thesis
datacite.resourceTypeGeneral Text
datacite.subjects [{'subject': 'NEC detection'}, {'subject': 'infrared thermal imaging'}, {'subject': 'RGB-D sensing'}, {'subject': 'thermal distribution analysis'}, {'subject': 'image processing'}]
release_month 7