Shape Animation with Combined Captured and Simulated Dynamics release_mcul24jicvaw5axwwaxan5afru

by Benjamin Allain, Li Wang, Jean-Sebastien Franco, Franck Hetroy, and Edmond Boyer

Released as a article .

2016  

Abstract

We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions.
In text/plain format

Archived Files and Locations

application/pdf  9.5 MB
file_xykj2cpav5acpocbchkhmhk24a
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article
Stage   submitted
Date   2016-01-06
Version   v1
Language   en ?
arXiv  1601.01232v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 0820e422-1e9c-4548-aa32-67dc78298e25
API URL: JSON