Development of a Microfluidic Platform for Trace Lipid Analysis release_kqssivahxfgydb3gcoa6amj4qm

by Andrew Davic, Michael Cascio

Released as a post by MDPI AG.

2020  

Abstract

The inherent trace quantity of primary fatty acid amides found in biological systems presents challenges for analytical analysis and quantitation, requiring a highly sensitive detection system. The use of microfluidics provides a green sample preparation and analysis technique through small-volume fluidic flow through micron-sized channels embedded in a PDMS device. Microfluidics provides the potential of having a micro total analysis system where chromatographic separation, fluorescent tagging reactions, and detection are accomplished with no added sample handling. This study describes the development and optimization of a microfluidic-laser indued fluorescence (LIF) analysis and detection system that can be used for the detection of ultra-trace levels of fluorescently tagged primary fatty acid amines. A PDMS microfluidic device was designed and fabricated to incorporate droplet-based flow. Droplet microfluidics have enabled on-chip fluorescent tagging reactions to be performed quickly and efficiently, with no additional sample handling. An optimized LIF optical detection system provided fluorescently tagged primary fatty acid amine detection sub-fmol (436 amol) LODs. The use of this LIF detection provides unparalleled sensitivity, with detection limits several orders of magnitude lower than currently employed LC-MS techniques and might be easily adapted for use as a complementary quantification platform for parallel MS-based -omics studies.
In application/xml+jats format

Archived Files and Locations

application/pdf  1.2 MB
file_fp4tddruz5bjxlz72bk3fzqkla
www.preprints.org (publisher)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  post
Stage   unknown
Date   2020-10-02
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 4c3ec0ec-c647-4e79-8631-372e9515c44c
API URL: JSON