Duality and mock modularity release_kgmop75xhjblfbtymnehdv5t7m

by Atish Dabholkar, Pavel Putrov, Edward Witten

Published in SciPost Physics by Stichting SciPost.

(2020)

Abstract

We derive a holomorphic anomaly equation for the Vafa-Witten partition function for twisted four-dimensional <jats:inline-formula><jats:alternatives><jats:tex-math>\mathcal{N} =4</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mstyle mathvariant="script"><mml:mi>𝒩</mml:mi></mml:mstyle><mml:mo>=</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> super Yang-Mills theory on <jats:inline-formula><jats:alternatives><jats:tex-math>\mathbb{CP}^{2}</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:msup><mml:mstyle mathvariant="double-struck"><mml:mi>ℂ</mml:mi><mml:mi>ℙ</mml:mi></mml:mstyle><mml:mn>2</mml:mn></mml:msup></mml:math></jats:alternatives></jats:inline-formula> for the gauge group <jats:inline-formula><jats:alternatives><jats:tex-math>SO(3)</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>S</mml:mi><mml:mi>O</mml:mi><mml:mo stretchy="false" form="prefix">(</mml:mo><mml:mn>3</mml:mn><mml:mo stretchy="false" form="postfix">)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> from the path integral of the effective theory on the Coulomb branch. The holomorphic kernel of this equation, which receives contributions only from the instantons, is not modular but 'mock modular'. The partition function has correct modular properties expected from <jats:inline-formula><jats:alternatives><jats:tex-math>S</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>S</mml:mi></mml:math></jats:alternatives></jats:inline-formula>-duality only after including the anomalous nonholomorphic boundary contributions from anti-instantons. Using M-theory duality, we relate this phenomenon to the holomorphic anomaly of the elliptic genus of a two-dimensional noncompact sigma model and compute it independently in two dimensions. The anomaly both in four and in two dimensions can be traced to a topological term in the effective action of six-dimensional <jats:inline-formula><jats:alternatives><jats:tex-math>(2,0)</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mo stretchy="false" form="prefix">(</mml:mo><mml:mn>2</mml:mn><mml:mo>,</mml:mo><mml:mn>0</mml:mn><mml:mo stretchy="false" form="postfix">)</mml:mo></mml:mrow></mml:math></jats:alternatives></jats:inline-formula> theory on the tensor branch. We consider generalizations to other manifolds and other gauge groups to show that mock modularity is generic and essential for exhibiting duality when the relevant field space is noncompact.
In application/xml+jats format

Archived Files and Locations

application/pdf  433.9 kB
file_sxhnijsrifex3nwyvhscyaqh4y
web.archive.org (webarchive)
scipost.org (publisher)
Read Archived PDF
Archived
Type  article-journal
Stage   published
Date   2020-11-13
Container Metadata
Open Access Publication
In DOAJ
In Keepers Registery
ISSN-L:  2542-4653
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: db57e86c-2ecc-4df4-9622-eb91c258a091
API URL: JSON