[b0]
via grobid
|
Synaptic plasticity, memory and the hippocampus: a neural network approach to causality
Guilherme Neves, Sam F. Cooke, Tim V. P. Bliss 2008
Nature Reviews Neuroscience
doi:10.1038/nrn2303
pmid:18094707
|
web.archive.org [PDF]
|
[b1]
via grobid
|
A synaptic model of memory: long-term potentiation in the hippocampus
T. V. P. Bliss, G. L. Collingridge 1993
Nature
doi:10.1038/361031a0
pmid:8421494
|
web.archive.org [PDF]
|
[b2]
via grobid
|
Receptor trafficking and synaptic plasticity
Graham L. Collingridge, John T. R. Isaac, Yu Tian Wang 2004
Nature Reviews Neuroscience
doi:10.1038/nrn1556
pmid:15550950
|
|
[b3]
via grobid
|
Long-Term Potentiation--A Decade of Progress?
R. C. Malenka 1999
Science
doi:10.1126/science.285.5435.1870
pmid:10489359
|
web.archive.org [PDF]
|
[b4]
via grobid
|
Synaptic AMPA Receptor Plasticity and Behavior
Helmut W. Kessels, Roberto Malinow 2009
Neuron
doi:10.1016/j.neuron.2009.01.015
pmcid:PMC3917551
pmid:19217372
|
web.archive.org [PDF]
|
[b5]
via grobid
|
AMPA Receptor Incorporation into Synapses during LTP: The Role of Lateral Movement and Exocytosis
Hiroshi Makino, Roberto Malinow 2009
Neuron
doi:10.1016/j.neuron.2009.08.035
pmcid:PMC2999463
pmid:19914186
|
web.archive.org [PDF]
|
[b6]
via grobid
|
Mineralocorticoid receptors are indispensable for nongenomic modulation of hippocampal glutamate transmission by corticosterone
H. Karst, S. Berger, M. Turiault, F. Tronche, G. Schutz, M. Joels 2005
Proceedings of the National Academy of Sciences of the United States of America
doi:10.1073/pnas.0507572102
pmcid:PMC1323174
pmid:16361444
|
web.archive.org [PDF]
|
[b7]
via grobid
|
Rapid Nongenomic Glucocorticoid Actions in Male Mouse Hypothalamic Neuroendocrine Cells Are Dependent on the Nuclear Glucocorticoid Receptor
Jebun Nahar, Juhee Haam, Chun Chen, Zhiying Jiang, Nicholas R. Glatzer, Louis J. Muglia, Gary P. Dohanich, James P. Herman (+ more) 2015
Endocrinology
doi:10.1210/en.2015-1273
pmcid:PMC4511129
pmid:26061727
|
|
[b8]
via grobid
|
Two Receptor Systems for Corticosterone in Rat Brain: Microdistribution and Differential Occupation
J. M. H. M. REUL, E. R. DE KLOET 1985
Endocrinology
doi:10.1210/endo-117-6-2505
pmid:2998738
|
|
[b9]
via grobid
|
The Stress Hormone Corticosterone Increases Synaptic α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors via Serum- and Glucocorticoid-inducible Kinase (SGK) Regulation of the GDI-Rab4 Complex
Wenhua Liu, Eunice Y. Yuen, Zhen Yan 2010
Journal of Biological Chemistry
doi:10.1074/jbc.m109.050229
pmcid:PMC2825404
pmid:20051515
|
web.archive.org [PDF]
|
[b10]
via grobid
|
Corticosterone Alters AMPAR Mobility and Facilitates Bidirectional Synaptic Plasticity
Stéphane Martin, Jeremy M. Henley, David Holman, Ming Zhou, Olof Wiegert, Myrrhe van Spronsen, Marian Joëls, Casper C. Hoogenraad (+ more) 2009
PLoS ONE
doi:10.1371/journal.pone.0004714
pmcid:PMC2659165
pmid:19305644
|
web.archive.org [PDF]
|
[b11]
via grobid
|
Acute stress causes rapid synaptic insertion of Ca2+-permeable AMPA receptors to facilitate long-term potentiation in the hippocampus
Garry Whitehead, Jihoon Jo, Ellen L. Hogg, Thomas Piers, Dong-Hyun Kim, Gillian Seaton, Heon Seok, Gilles Bru-Mercier (+ more) 2013
Brain
doi:10.1093/brain/awt293
pmcid:PMC3859225
pmid:24271563
|
archive.org [PDF]
|
[b12]
via grobid
|
The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation
Laurent Groc, Daniel Choquet, Francis Chaouloff 2008
Nature Neuroscience
doi:10.1038/nn.2150
pmid:18622402
|
|
[b13]
via grobid
|
3 Molecular diversity of the adenylyl cyclases
[chapter]
John Krupinski, James J. Cali 1997
Advances in second messenger and phosphoprotein research
doi:10.1016/s1040-7952(98)80005-0
|
|
[b14]
via grobid
|
Neuroanatomical distribution and neurochemical characterization of cells expressing adenylyl cyclase isoforms in mouse and rat brain
Cristina Sanabra, Guadalupe Mengod 2011
Journal of Chemical Neuroanatomy
doi:10.1016/j.jchemneu.2010.11.001
pmid:21094251
|
web.archive.org [PDF]
|
[b15]
via grobid
|
Calcium Calmodulin-Stimulated Adenylyl Cyclases Contribute to Activation of Extracellular Signal-Regulated Kinase in Spinal Dorsal Horn Neurons in Adult Rats and Mice
F. Wei 2006
Journal of Neuroscience
doi:10.1523/jneurosci.3292-05.2006
pmid:16421305
|
web.archive.org [PDF]
|
[b16]
via grobid
|
Absence of Ca2+-stimulated adenylyl cyclases leads to reduced synaptic plasticity and impaired experience-dependent fear memory
L Wieczorek, D Majumdar, T A Wills, L Hu, D G Winder, D J Webb, L J Muglia 2012
Translational Psychiatry
doi:10.1038/tp.2012.50
pmcid:PMC3365269
pmid:22832970
|
archive.org [PDF]
|
[b17]
via grobid
|
Wang, H. et al. Type 8 adenylyl cyclase is targeted to excitatory synapses and required for mossy ber long-term potentiation. The Journal of neuroscience : the o cial journal of the Society for Neuroscience23, 9710-9718 (2003).
|
|
[b18]
via grobid
|
Calmodulin-Regulated Adenylyl Cyclases: Cross-Talk and Plasticity in the Central Nervous System
H. Wang 2003
Molecular Pharmacology
doi:10.1124/mol.63.3.463
pmid:12606751
|
web.archive.org [PDF]
|
[b19]
via grobid
|
Whitehead, G. et al. Acute stress causes rapid synaptic insertion of Ca2+ -permeable AMPA receptors to facilitate long-term potentiation in the hippocampus. Brain136, 3753-3765, doi:10.1093/brain/awt293 (2013).
|
|
[b20]
via grobid
|
cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase
Yan-You Huang, Xiao-Ching Li, Eric R. Kandel 1994
Cell
doi:10.1016/0092-8674(94)90401-4
pmid:7923379
|
|
[b21]
via grobid
|
Requirement of a critical period of transcription for induction of a late phase of LTP
P. Nguyen, T Abel, E. Kandel 1994
Science
doi:10.1126/science.8066450
pmid:8066450
|
|
[b22]
via grobid
|
Shavit Stein, E., Itsekson Hayosh, Z., Vlachos, A. & Maggio, N. Stress and Corticosteroids
|
|
[b23]
via grobid
|
Stress and Corticosteroids Modulate Muscarinic Long Term Potentiation (mLTP) in the Hippocampus
Efrat Shavit Stein, Ze'Ev Itsekson Hayosh, Andreas Vlachos, Nicola Maggio 2017
Frontiers in Cellular Neuroscience
doi:10.3389/fncel.2017.00299
pmcid:PMC5627013
pmid:29033789
|
web.archive.org [PDF]
|
[b24]
via grobid
|
Glucocorticoids are involved in the long-term effects of a single immobilization stress on the hypothalamic–pituitary–adrenal axis
S Dal-Zotto 2003
Psychoneuroendocrinology
doi:10.1016/s0306-4530(02)00120-8
pmid:14529704
|
|
[b25]
via grobid
|
Regulation of Ca2+-permeable AMPA receptors: synaptic plasticity and beyond
Stuart Cull-Candy, Leah Kelly, Mark Farrant 2006
Current Opinion in Neurobiology
doi:10.1016/j.conb.2006.05.012
pmid:16713244
|
|
[b26]
via grobid
|
Regulatory mechanisms of AMPA receptors in synaptic plasticity
Victor A. Derkach, Michael C. Oh, Eric S. Guire, Thomas R. Soderling 2007
Nature Reviews Neuroscience
doi:10.1038/nrn2055
pmid:17237803
|
|
[b27]
via grobid
|
Recruitment of Calcium-Permeable AMPA Receptors during Synaptic Potentiation Is Regulated by CaM-Kinase I
E. S. Guire, M. C. Oh, T. R. Soderling, V. A. Derkach 2008
Journal of Neuroscience
doi:10.1523/jneurosci.0384-08.2008
pmcid:PMC2671029
pmid:18524905
|
web.archive.org [PDF]
|
[b28]
via grobid
|
Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity
Hey-Kyoung Lee, Michaela Barbarosie, Kimihiko Kameyama, Mark F. Bear, Richard L. Huganir 2000
Nature
doi:10.1038/35016089
pmid:10879537
|
web.archive.org [PDF]
|
[b29]
via grobid
|
Stabilization of Ca2+-permeable AMPA receptors at perisynaptic sites by GluR1-S845 phosphorylation
K. He, L. Song, L. W. Cummings, J. Goldman, R. L. Huganir, H.-K. Lee 2009
Proceedings of the National Academy of Sciences of the United States of America
doi:10.1073/pnas.0910338106
pmcid:PMC2785287
pmid:19892736
|
web.archive.org [PDF]
|