Probabilistic Localization of Insect-Scale Drones on Floating-Gate Inverter Arrays release_jbstu2yts5emflhrr3ffsb2g4y

by Priyesh Shukla, Ankith Muralidhar, Nick Iliev, Theja Tulabandhula, Sawyer B. Fuller, Amit Ranjan Trivedi

Released as a article .

2021  

Abstract

We propose a novel compute-in-memory (CIM)-based ultra-low-power framework for probabilistic localization of insect-scale drones. The conventional probabilistic localization approaches rely on the three-dimensional (3D) Gaussian Mixture Model (GMM)-based representation of a 3D map. A GMM model with hundreds of mixture functions is typically needed to adequately learn and represent the intricacies of the map. Meanwhile, localization using complex GMM map models is computationally intensive. Since insect-scale drones operate under extremely limited area/power budget, continuous localization using GMM models entails much higher operating energy – thereby, limiting flying duration and/or size of the drone due to a larger battery. Addressing the computational challenges of localization in an insect-scale drone using a CIM approach, we propose a novel framework of 3D map representation using a harmonic mean of "Gaussian-like" mixture (HMGM) model. The likelihood function useful for drone localization can be efficiently implemented by connecting many multi-input inverters in parallel, each programmed with the parameters of the 3D map model represented as HMGM. When the depth measurements are projected to the input of the implementation, the summed current of the inverters emulates the likelihood of the measurement. We have characterized our approach on an RGB-D indoor localization dataset. The average localization error in our approach is ∼0.1125 m which is only slightly degraded than software-based evaluation (∼0.08 m). Meanwhile, our localization framework is ultra-low-power, consuming as little as ∼17 μW power while processing a depth frame in 1.33 ms over hundred pose hypotheses in the particle-filtering (PF) algorithm used to localize the drone.
In text/plain format

Archived Files and Locations

application/pdf  10.0 MB
file_5nqyn7l4dzccpadfztqw5m6hki
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Archived
Type  article
Stage   submitted
Date   2021-02-16
Version   v1
Language   en ?
arXiv  2102.08247v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: b988258d-fd1a-457e-8e3e-066ec2b4291c
API URL: JSON