Mitigating the Curse of Dimensionality: Sparse Grid Characteristics Method for Optimal Feedback Control and HJB Equations release_jbg7osjmsvcbne34turu6thzmi

by Wei Kang, Lucas C. Wilcox


We address finding the semi-global solutions to optimal feedback control and the Hamilton--Jacobi--Bellman (HJB) equation. Using the solution of an HJB equation, a feedback optimal control law can be implemented in real-time with minimum computational load. However, except for systems with two or three state variables, using traditional techniques for numerically finding a semi-global solution to an HJB equation for general nonlinear systems is infeasible due to the curse of dimensionality. Here we present a new computational method for finding feedback optimal control and solving HJB equations which is able to mitigate the curse of dimensionality. We do not discretize the HJB equation directly, instead we introduce a sparse grid in the state space and use the Pontryagin's maximum principle to derive a set of necessary conditions in the form of a boundary value problem, also known as the characteristic equations, for each grid point. Using this approach, the method is spatially causality free, which enjoys the advantage of perfect parallelism on a sparse grid. Compared with dense grids, a sparse grid has a significantly reduced size which is feasible for systems with relatively high dimensions, such as the 6-D system shown in the examples. Once the solution obtained at each grid point, high-order accurate polynomial interpolation is used to approximate the feedback control at arbitrary points. We prove an upper bound for the approximation error and approximate it numerically. This sparse grid characteristics method is demonstrated with two examples of rigid body attitude control using momentum wheels.
In text/plain format

Released as a article
Version v3
Release Date 2016-06-15
Primary Language en (lookup)

Known Files and URLs

application/pdf  430.9 kB
sha1:af01bea92ca1ed5337d9... (webarchive) (repository)
Read Full Text
Type  article
Stage   submitted
Date   2016-06-15
Version   v3
arXiv  1507.04769v3
Work Entity
grouping other versions (eg, pre-print) and variants of this release
Cite This Release
Fatcat Bits

State is "active". Revision:
As JSON object via API