Fast Distributed Algorithms for Connectivity and MST in Large Graphs release_iyna6b7jdzaq7iz3ccwaiwgusa

by Gopal Pandurangan, Peter Robinson, Michele Scquizzato

Released as a article .

2015  

Abstract

Motivated by the increasing need to understand the algorithmic foundations of distributed large-scale graph computations, we study a number of fundamental graph problems in a message-passing model for distributed computing where k ≥ 2 machines jointly perform computations on graphs with n nodes (typically, n ≫ k). The input graph is assumed to be initially randomly partitioned among the k machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication rounds of the computation. Our main result is an (almost) optimal distributed randomized algorithm for graph connectivity. Our algorithm runs in Õ(n/k^2) rounds (Õ notation hides a (n) factor and an additive (n) term). This improves over the best previously known bound of Õ(n/k) [Klauck et al., SODA 2015], and is optimal (up to a polylogarithmic factor) in view of an existing lower bound of Ω̃(n/k^2). Our improved algorithm uses a bunch of techniques, including linear graph sketching, that prove useful in the design of efficient distributed graph algorithms. Using the connectivity algorithm as a building block, we then present fast randomized algorithms for computing minimum spanning trees, (approximate) min-cuts, and for many graph verification problems. All these algorithms take Õ(n/k^2) rounds, and are optimal up to polylogarithmic factors. We also show an almost matching lower bound of Ω̃(n/k^2) rounds for many graph verification problems by leveraging lower bounds in random-partition communication complexity.
In text/plain format

Archived Files and Locations

application/pdf  460.9 kB
file_srppnsc4y5cjpj5pgf2a7uf6qy
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article
Stage   submitted
Date   2015-03-09
Version   v1
Language   en ?
arXiv  1503.02353v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 1cef2f8f-f26a-46a7-82f5-6abd80151683
API URL: JSON