Mitigation of B1+ inhomogeneity for ultra-high-field magnetic resonance imaging: hybrid mode shaping with auxiliary EM potential release_hzgf2iqucjcn5dhsnaplr7worm

by Minkyu Park, Hansol Noh, Namkyoo Park

Published in Scientific Reports by Springer Science and Business Media LLC.

2020   Volume 10, Issue 1, p11752

Abstract

The notion of mode shaping based on evanescent coupling has been successfully applied in various fields of optics, such as in the dispersion engineering of optical waveguides. Here, we show that the same concept provides an opportunity for the seemingly different field of ultra-high-field MRI, addressing transmit RF magnetic field (B1+) inhomogeneity. In this work, treating the human phantom as a resonator, we employ an evanescently coupled high-index cladding layer to study the effects of the auxiliary potential on shaping the B1+ field distribution inside the phantom. Controlling the strength and coupling of the auxiliary potential ultimately determining the hybridized mode, we successfully demonstrate the global 2D homogenization of axial B1+ for a simplified cylindrical phantom and for a more realistic phantom of spheroidal geometry. The mode-shaping potentials with a magnetic permeability or material loss are also tested to offer additional degrees of freedom in the selection of materials as well as in the manipulation of the B1+ distribution, opening up the possibility of B1+ homogenization for 3D MRI scanning.
In text/plain format

Archived Files and Locations

application/pdf  2.6 MB
file_zsy5fimiwfchbekt3gmnedseem
www.nature.com (publisher)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2020-07-16
Language   en ?
Container Metadata
Open Access Publication
In DOAJ
In Keepers Registry
ISSN-L:  2045-2322
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 54834c7e-24be-4301-ba4f-97a13933ae11
API URL: JSON