Likelihood-based Inference for Partially Observed Epidemics on Dynamic Networks release_hqmitl6atfactarvo22gat4fwq

by Fan Bu, Allison E. Aiello, Jason Xu, Alexander Volfovsky

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 58 references (in 78ms)
[b0]

via grobid
Aiello, A. E., A. M. Simanek, M. C. Eisenberg, A. R. Walsh, B. Davis, E. Volz, C. Cheng, J. J.
[b1]

via grobid
Rainey, A. Uzicanin, H. Gao, et al. (2016). Design and methods of a social network isolation study for reducing respiratory infection transmission: The eX-FLU cluster randomized trial. Epidemics 15, 38-55.
[b2]

via grobid
Anderson, R. M. and R. M. May (1992). Infectious diseases of humans: dynamics and control. Oxford university press.
[b3]

via grobid
Andrieu, C., A. Doucet, and R. Holenstein (2010). Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72 (3), 269-342.
[b4]

via fuzzy
Transmission of Pneumococcal Carriage in Families: A Latent Markov Process Model for Binary Longitudinal Data
Kari Auranen, Elja Arjas, Tuija Leino, Aino K. Takala
2000   Journal of the American Statistical Association
doi:10.1080/01621459.2000.10474301 
[b5]

via grobid
Bailey, N. T. et al. (1975). The mathematical theory of infectious diseases and its applications. Number 2nd ediition. Charles Griffin & Company Ltd 5a Crendon Street, High Wycombe, Bucks HP13 6LE.
[b6]

via fuzzy
Emergence of Scaling in Random Networks
A. Barabási
1999   Science
doi:10.1126/science.286.5439.509  pmid:10521342 
web.archive.org [PDF]
[b7]

via grobid
Barrat, A., C. Cattuto, A. E. Tozzi, P. Vanhems, and N. Voirin (2014). Measuring contact patterns with wearable sensors: methods, data characteristics and applications to data- driven simulations of infectious diseases. Clinical Microbiology and Infection 20 (1), 10-16.
[b8]

via grobid
Becker, N. G. and T. Britton (1999). Statistical studies of infectious disease incidence. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61 (2), 287- 307.
[b9]

via grobid
Bell, D., A. Nicoll, K. Fukuda, P. Horby, and A. Monto (2006). World health organi- zation writing group. non-pharmaceutical interventions for pandemic influenza, national and community measures. Emerg Infect Dis 12 (1), 88-94.
[b10]

via fuzzy
Stochastic epidemic models: A survey
Tom Britton
2010   Mathematical Biosciences
doi:10.1016/j.mbs.2010.01.006  pmid:20102724 
web.archive.org [PDF]
[b11]

via fuzzy
Epidemic models on social networks—With inference
Tom Britton
2020   Statistica neerlandica (Print)
doi:10.1111/stan.12203 
web.archive.org [PDF]
[b12]

via grobid
Britton, T. and P. D. O'Neill (2002). Bayesian inference for stochastic epidemics in popula- tions with random social structure. Scandinavian Journal of Statistics 29 (3), 375-390.
[b13]

via grobid
Cauchemez, S. and N. M. Ferguson (2008). Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in london. Journal of the Royal Society Interface 5 (25), 885-897.
[b14]

via grobid
Cauchemez, S., L. Temime, A.-J. Valleron, E. Varon, G. Thomas, D. Guillemot, and P.-Y.
[b15]

via grobid
Boëlle (2006). S. pneumoniae transmission according to inclusion in conjugate vaccines:
[b16]

via fuzzy
Efficient Data Augmentation for Fitting Stochastic Epidemic Models to Prevalence Data
Jonathan Fintzi, Xiang Cui, Jon Wakefield, Vladimir N. Minin
2017   Journal of Computational And Graphical Statistics
doi:10.1080/10618600.2017.1328365  pmcid:PMC6275108  pmid:30515026 
web.archive.org [PDF]
[b17]

via grobid
Funk, S., M. Salathé, and V. A. Jansen (2010). Modelling the influence of human behaviour on the spread of infectious diseases: a review. Journal of the Royal Society Interface 7 (50), 1247-1256.
[b18]

via grobid
Geweke, J. et al. (1991). Evaluating the accuracy of sampling-based approaches to the calcu- lation of posterior moments, Volume 196. Federal Reserve Bank of Minneapolis, Research Department Minneapolis, MN.
[b19]

via grobid
Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of computational physics 22 (4), 403-434.
[b20]

via grobid
Guttorp, P. and V. N. Minin (2018). Stochastic modeling of scientific data. Chapman and Hall/CRC.
[b21]

via grobid
He, D., E. L. Ionides, and A. A. King (2010). Plug-and-play inference for disease dynamics: measles in large and small populations as a case study. Journal of the Royal Society Interface 7 (43), 271-283.
[b22]

via fuzzy
The Mathematics of Infectious Diseases
Herbert W. Hethcote
2000   SIAM Review
doi:10.1137/s0036144500371907 
web.archive.org [PDF]
[b23]

via grobid
Ho, L. S. T., F. W. Crawford, M. A. Suchard, et al. (2018). Direct likelihood-based inference for discretely observed stochastic compartmental models of infectious disease. The Annals of Applied Statistics 12 (3), 1993-2021.
[b24]

via grobid
Ho, L. S. T., J. Xu, F. W. Crawford, V. N. Minin, and M. A. Suchard (2018). Birth/birth- death processes and their computable transition probabilities with biological applications. Journal of Mathematical Biology 76 (4), 911-944.
[b25]

via fuzzy
Simulation from endpoint-conditioned, continuous-time Markov chains on a finite state space, with applications to molecular evolution
Asger Hobolth, Eric A. Stone
2009   Annals of Applied Statistics
doi:10.1214/09-aoas247  pmcid:PMC2818752  pmid:20148133 
web.archive.org [PDF]
[b26]

via grobid
Höhle, M. and E. Jørgensen (2002). Estimating parameters for stochastic epidemics. [The Royal Veterinary and Agricultural University], Dina.
[b27]

via fuzzy
Outbreaks of Streptococcus pneumoniaecarriage in day care cohorts in Finland – implications for elimination of transmission
Fabian Hoti, Panu Erästö, Tuija Leino, Kari Auranen
2009   BMC Infectious Diseases
doi:10.1186/1471-2334-9-102  pmcid:PMC2717096  pmid:19558701 
web.archive.org [PDF]
[b28]

via grobid
Kermack, W. O. and A. G. McKendrick (1927). A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character 115 (772), 700-721.
[b29]

via grobid
Kiss, I. Z., L. Berthouze, T. J. Taylor, and P. L. Simon (2012). Modelling approaches for simple dynamic networks and applications to disease transmission models. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468 (2141), 1332- 1355.
Showing 1 - 30 of 58 references  next »