The effect of rapamycin treatment on cerebral ischemia: A systematic review and meta-analysis of animal model studies release_hpnyszuu5zeoza7w6d7fv22sgy

by Daniel J Beard, Gina Hadley, Neal Thurley, David W Howells, Brad A Sutherland, Alastair Buchan

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 54 references (in 266ms)
[bibr1-1747493018816503]

via fatcat-pubmed
Tsc1 (hamartin) confers neuroprotection against ischemia by inducing autophagy
Michalis Papadakis, Gina Hadley, Maria Xilouri, Lisa C Hoyte, Simon Nagel, M Mary McMenamin, Grigorios Tsaknakis, Suzanne M Watt (+ more)
2013   Nature Medicine
doi:10.1038/nm.3097  pmcid:PMC3744134  pmid:23435171 
web.archive.org [PDF]
[bibr2-1747493018816503]

via crossref
Targeting the mTOR Signaling Network for Alzheimer's Disease Therapy
Chong Wang, Jin-Tai Yu, Dan Miao, Zhong-Chen Wu, Meng-Shan Tan, Lan Tan
2013   Molecular Neurobiology
doi:10.1007/s12035-013-8505-8  pmid:23853042 
[bibr3-1747493018816503]

via crossref
Hypoxia regulates TSC1/2 mTOR signaling and tumor suppression through REDD1-mediated 14 3 3 shuttling
M. P. DeYoung, P. Horak, A. Sofer, D. Sgroi, L. W. Ellisen
2008   Genes & Development
doi:10.1101/gad.1617608  pmcid:PMC2192757  pmid:18198340 
web.archive.org [PDF]
[bibr4-1747493018816503]

via fatcat-pubmed
The AMP-activated protein kinase pathway - new players upstream and downstream
D. G. Hardie
2004   Journal of Cell Science
doi:10.1242/jcs.01540  pmid:15509864 
web.archive.org [PDF]
[bibr5-1747493018816503]

via crossref
Rapamycin in transplantation: A review of the evidence
Richard N. Saunders, Mathew S. Metcalfe, Michael L. Nicholson
2001   Kidney International
doi:10.1046/j.1523-1755.2001.00460.x  pmid:11135052 
web.archive.org [PDF]
[bibr6-1747493018816503]

via fatcat-pubmed
The Sirolimus-Eluting Stent
Kate McKeage, David Murdoch, Karen L Goa
2003   American Journal of Cardiovascular Drugs
doi:10.2165/00129784-200303030-00007  pmid:14727933 
[bibr7-1747493018816503]

via fatcat-pubmed
A Systematic Review and Meta-Analysis of Erythropoietin in Experimental Stroke
Mikael Jerndal, Kalle Forsberg, Emily S Sena, Malcolm R Macleod, Victoria E O'Collins, Thomas Linden, Michael Nilsson, David W Howells
2009   Journal of Cerebral Blood Flow and Metabolism
doi:10.1038/jcbfm.2009.267  pmcid:PMC2949185  pmid:20040929 
web.archive.org [PDF]
[bibr8-1747493018816503]

via fatcat-pubmed
Evidence for the Efficacy of NXY-059 in Experimental Focal Cerebral Ischaemia Is Confounded by Study Quality
M. R. Macleod, H. B. van der Worp, E. S. Sena, D. W. Howells, U. Dirnagl, G. A. Donnan
2008   Stroke
doi:10.1161/strokeaha.108.515957  pmid:18635842 
web.archive.org [PDF]
[bibr9-1747493018816503]

via crossref
de Vries RBMH
2015   Evid Base Preclin Med
volume:1 
[bibr10-1747493018816503]

via fatcat-pubmed
Pooling of Animal Experimental Data Reveals Influence of Study Design and Publication Bias
M. R. Macleod
2004   Stroke
doi:10.1161/01.str.0000125719.25853.20  pmid:15060322 
web.archive.org [PDF]
[bibr11-1747493018816503]

via crossref
Bochelen D
1999   J Pharmacol Exp Ther
volume:288 
[bibr12-1747493018816503]

via crossref
Rapamycin up-regulation of autophagy reduces infarct size and improves outcomes in both permanent MCAL, and embolic MCAO, murine models of stroke
Kathleen M Buckley, Daniel L Hess, Irina Y Sazonova, Sudharsan Periyasamy-Thandavan, John R Barrett, Russell Kirks, Harrison Grace, Galina Kondrikova (+ more)
2014   Experimental & Translational Stroke Medicine
doi:10.1186/2040-7378-6-8  pmcid:PMC4079187  pmid:24991402 
web.archive.org [PDF]
[bibr13-1747493018816503]

via fatcat-pubmed
Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats
Anjali Chauhan, Uma Sharma, N.R. Jagannathan, K.H. Reeta, Yogendra Kumar Gupta
2011   Behavioural Brain Research
doi:10.1016/j.bbr.2011.08.035  pmid:21903138 
[bibr14-1747493018816503]

via fatcat-pubmed
Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia
O.Z. Chi, S. Barsoum, N.M. Vega-Cotto, E. Jacinto, X. Liu, S.J. Mellender, H.R. Weiss
2016   Neuroscience
doi:10.1016/j.neuroscience.2015.12.045  pmcid:PMC4881736  pmid:26742793 
web.archive.org [PDF]
[bibr15-1747493018816503]

via crossref
Effects of rapamycin pretreatment on blood-brain barrier disruption in cerebral ischemia-reperfusion
Oak Z. Chi, Scott J. Mellender, Sylviana Barsoum, Xia Liu, Stacey Damito, Harvey R. Weiss
2016   Neuroscience Letters
doi:10.1016/j.neulet.2016.03.053  pmid:27037216 
[bibr16-1747493018816503]

via crossref
Rapamycin alleviates brain edema after focal cerebral ischemia reperfusion in rats
Wei Guo, Guoying Feng, Yanying Miao, Guixiang Liu, Chunsheng Xu
2014   Immunopharmacology and immunotoxicology
doi:10.3109/08923973.2014.913616  pmid:24773551 
[bibr17-1747493018816503]

via fatcat-pubmed
mTORC1 pathway disruption ameliorates brain inflammation following stroke via a shift in microglia phenotype from M1 type to M2 type
Daojing Li, Chunjiong Wang, Yang Yao, Li Chen, Guiyou Liu, Rongxin Zhang, Qiang Liu, Fu-Dong Shi (+ more)
2016   The FASEB Journal
doi:10.1096/fj.201600495r  pmid:27342766 
[bibr18-1747493018816503]

via crossref
Rapamycin attenuates mitochondrial dysfunction via activation of mitophagy in experimental ischemic stroke
Qiang Li, Ting Zhang, Jixian Wang, Zhijun Zhang, Yu Zhai, Guo-Yuan Yang, Xiaojiang Sun
2014   Biochemical and Biophysical Research Communications - BBRC
doi:10.1016/j.bbrc.2014.01.032  pmid:24440703 
[bibr19-1747493018816503]

via fatcat-pubmed
The Antiaging Activity and Cerebral Protection of Rapamycin at Micro-doses
Haiyan Qi, Feng-Yun Su, Shan Wan, Yongjie Chen, Yan-Qiong Cheng, Ai-Jun Liu
2014   CNS Neuroscience & Therapeutics
doi:10.1111/cns.12338  pmid:25327787 
[bibr20-1747493018816503]

via crossref
Immunophilins mediate the neuroprotective effects of FK506 in focal cerebral ischaemia
John Sharkey, Steven P. Butcher
1994   Nature
doi:10.1038/371336a0  pmid:7522303 
[bibr21-1747493018816503]

via crossref
Autophagy activation is associated with neuroprotection in a rat model of focal cerebral ischemic preconditioning
Rui Sheng, Li-Sha Zhang, Rong Han, Xiao-Qian Liu, Bo Gao, Zheng-Hong Qin
2010   Autophagy
doi:10.4161/auto.6.4.11737  pmid:20400854 
[bibr22-1747493018816503]

via crossref
Autophagy Activation Contributes to the Neuroprotection of Remote Ischemic Perconditioning Against Focal Cerebral Ischemia in Rats
Jingyuan Su, Tingting Zhang, Kanwen Wang, Tingzhun Zhu, Xiaoming Li
2014   Neurochemical Research
doi:10.1007/s11064-014-1396-x  pmid:25082119 
[bibr23-1747493018816503]

via crossref
mTOR Signaling Inhibition Modulates Macrophage/Microglia-Mediated Neuroinflammation and Secondary Injury via Regulatory T Cells after Focal Ischemia
L. Xie, F. Sun, J. Wang, X. Mao, L. Xie, S.-H. Yang, D.-M. Su, J. W. Simpkins (+ more)
2014   Journal of Immunology
doi:10.4049/jimmunol.1303492  pmcid:PMC4128178  pmid:24829408 
web.archive.org [PDF]
[bibr24-1747493018816503]

via crossref
Mammalian Target of Rapamycin Cell Signaling Pathway Contributes to the Protective Effects of Ischemic Postconditioning Against Stroke
Rong Xie, Peng Wang, Michelle Cheng, Robert Sapolsky, Xunming Ji, Heng Zhao
2014   Stroke
doi:10.1161/strokeaha.114.005406  pmcid:PMC4146669  pmid:25013017 
web.archive.org [PDF]
[bibr25-1747493018816503]

via crossref
Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats
Wenjun Yan, Haopeng Zhang, Xiaoguang Bai, Yan Lu, Hailong Dong, Lize Xiong
2011   Brain Research
doi:10.1016/j.brainres.2011.05.049  pmid:21684529 
[bibr26-1747493018816503]

via fatcat-pubmed
Hypoxia induces microglia autophagy and neural inflammation injury in focal cerebral ischemia model
Zhao Yang, Lina Zhong, Shanchuan Zhong, Ronghua Xian, Bangqing Yuan
2015   Experimental and molecular pathology (Print)
doi:10.1016/j.yexmp.2015.02.003  pmid:25666359 
[bibr28-1747493018816503]

via crossref
Increased autophagy reduces endoplasmic reticulum stress after neonatal hypoxia–ischemia: Role of protein synthesis and autophagic pathways
Silvia Carloni, Maria Cristina Albertini, Luca Galluzzi, Giuseppe Buonocore, Fabrizio Proietti, Walter Balduini
2014   Experimental Neurology
doi:10.1016/j.expneurol.2014.03.002  pmid:24631374 
[bibr29-1747493018816503]

via crossref
Protective role of autophagy in neonatal hypoxia–ischemia induced brain injury
Silvia Carloni, Giuseppe Buonocore, Walter Balduini
2008   Neurobiology of Disease
doi:10.1016/j.nbd.2008.07.022  pmid:18760364 
[bibr30-1747493018816503]

via crossref
Activation of autophagy and Akt/CREB signaling play an equivalent role in the neuroprotective effect of rapamycin in neonatal hypoxia-ischemia
Silvia Carloni, Silvia Girelli, Claudia Scopa, Giuseppe Buonocore, Mariangela Longini, Walter Balduini
2010   Autophagy
doi:10.4161/auto.6.3.11261  pmid:20168088 
[bibr31-1747493018816503]

via crossref
Neuroprotection of Ro25-6981 Against Ischemia/Reperfusion-Induced Brain Injury via Inhibition of Autophagy
Fuxing Dong, Ruiqin Yao, Hongli Yu, Yaping Liu
2016   Cellular and molecular neurobiology
doi:10.1007/s10571-016-0409-5  pmid:27456026 
Showing 1 - 30 of 54 references  next »