Learning Product Rankings Robust to Fake Users release_e5ij4bu2abdedbd2f5gi6w4yuy

by Negin Golrezaei, Vahideh Manshadi, Jon Schneider, Shreyas Sekar

Released as a article .

(2020)

Abstract

In many online platforms, customers' decisions are substantially influenced by product rankings as most customers only examine a few top-ranked products. Concurrently, such platforms also use the same data corresponding to customers' actions to learn how these products must be ranked or ordered. These interactions in the underlying learning process, however, may incentivize sellers to artificially inflate their position by employing fake users, as exemplified by the emergence of click farms. Motivated by such fraudulent behavior, we study the ranking problem of a platform that faces a mixture of real and fake users who are indistinguishable from one another. We first show that existing learning algorithms---that are optimal in the absence of fake users---may converge to highly sub-optimal rankings under manipulation by fake users. To overcome this deficiency, we develop efficient learning algorithms under two informational environments: in the first setting, the platform is aware of the number of fake users, and in the second setting, it is agnostic to the number of fake users. For both these environments, we prove that our algorithms converge to the optimal ranking, while being robust to the aforementioned fraudulent behavior; we also present worst-case performance guarantees for our methods, and show that they significantly outperform existing algorithms. At a high level, our work employs several novel approaches to guarantee robustness such as: (i) constructing product-ordering graphs that encode the pairwise relationships between products inferred from the customers' actions; and (ii) implementing multiple levels of learning with a judicious amount of bi-directional cross-learning between levels.
In text/plain format

Archived Files and Locations

application/pdf  1.6 MB
file_whj7xdvgpjf5fmhdwhpvogfywa
web.archive.org (webarchive)
arxiv.org (repository)
Read Archived PDF
Archived
Type  article
Stage   submitted
Date   2020-09-10
Version   v1
Language   en ?
arXiv  2009.05138v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: b80e7bea-5933-496b-804d-46a62f305a4a
API URL: JSON