How to tune the RBF SVM hyperparameters?: An empirical evaluation of 18 search algorithms release_cdlgg5hdlfakddjxqgcaad3lou

by Jacques Wainer, Pablo Fonseca


NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 53 references (in 195ms)

via grobid
Aarts E, Korst J (1988) Simulated annealing and Boltzmann machines. John Wiley and Sons Inc.

via grobid
Anguita D, Ridella S, Rivieccio F, Zunino R (2003) Hyperparameter design criteria for support vector classifiers. Neurocomputing 55(12):109 -134

via grobid
Bendtsen C (2012) pso: Particle swarm optimization. version 1.0.3

via fuzzy
Random Search for Hyper-Parameter Optimization
James Bergstra, Yoshua Bengio
2012   Journal of machine learning research

via fuzzy
Algorithms for Hyper-Parameter Optimization
James Bergstra, Rémi Bardenet, Yoshua Bengio, Balázs Kégl
2011   Neural Information Processing Systems

via fuzzy
Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures
James Bergstra, Daniel Yamins, David D. Cox
2013   International Conference on Machine Learning

via grobid
Caputo B, Sim K, Furesjo F, Smola A (2002) Appearance-based object recogni- tion using SVMs: which kernel should I use? In: NIPS Workshop on statisti- cal methods for computational experiments in visual processing and computer vision.

via fuzzy
Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters
Gavin C. Cawley, Nicola L. C. Talbot
2007   Journal of machine learning research

via fuzzy
On Over-fitting in Model Selection and Subsequent Selection Bias in Performance Evaluation
Gavin C. Cawley, Nicola L. C. Talbot
2010   Journal of machine learning research

via fuzzy
LIBSVM : A Library for Support Vector Machines
C Chang, C Lin
2011   ACM Transactions on Intelligent Systems and Technology  unpublished [PDF]

via grobid
Cohen G, Ruch P, Hilario M (2005) Model selection for support vector classifiers via direct simplex search. In: FLAIRS Conference, pp 431-435

via fuzzy
Statistical Comparisons of Classifiers over Multiple Data Sets
Janez Demsar
2006   Journal of machine learning research

via grobid
Duarte E, Wainer J (2017) Empirical comparison of cross-validation and internal metrics for tuning SVM hyperparameters. Pattern Recognition Letters 88:6- 11

via fuzzy
A new optimizer using particle swarm theory
R. Eberhart, J. Kennedy
MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science  unpublished
doi:10.1109/mhs.1995.494215 [PDF]

via fuzzy
Uniform Design: Theory and Application
Kai-Tai Fang, Dennis K. J. Lin, Peter Winker, Yong Zhang
2000   Technometrics

via fuzzy
Do we need hundreds of classifiers to solve real world classification problems?
Manuel Fernández Delgado, Eva Cernadas, Senén Barro, Dinani Gomes Amorim
2014   Journal of machine learning research

via fuzzy
Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES)
Nikolaus Hansen, Sibylle D. Müller, Petros Koumoutsakos
2003   Evolutionary Computation
doi:10.1162/106365603321828970  pmid:12804094 

via grobid
Hastie T (2012) svmpath: the SVM Path algorithm. version 0.953

via fuzzy
The Entire Regularization Path for the Support Vector Machine
Trevor Hastie, Saharon Rosset, Robert Tibshirani, Ji Zhu
2004   Neural Information Processing Systems

via grobid
Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classi- fication. Tech. rep., Department of Computer Science National Taiwan Uni- versity, updated: May 19, 2016

via fuzzy
A distributed PSO–SVM hybrid system with feature selection and parameter optimization
Cheng-Lung Huang, Jian-Fan Dun
2008   Applied Soft Computing

via grobid
Huang CM, Lee YJ, Lin D, Huang SY (2007) Model selection for support vec- tor machines via uniform design. Computational Statistics & Data Analysis 52(1):335-346

via grobid
Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimiza- tion for general algorithm configuration. In: International Conference on Learning and Intelligent Optimization, Springer, pp 507-523

via grobid
Hutter F, Kotthoff L, Vanschoren J (2019) Automated Machine Learning. Springer Hyperopt: Distributed asynchronous hyper-parameter optimization. http://

via grobid
Imbault F, Lebart K (2004) A stochastic optimization approach for parameter tuning of support vector machines. In: International Conference on Pattern Recognition, IEEE, vol 4, pp 597-600

via fuzzy
The maximum-margin approach to learning text classifiers: methods theory, and algorithms
Thorsten Joachims
2001   Jahrestagung der Gesellschaft für Informatik

via fuzzy
kernlab- AnS4Package for Kernel Methods inR
Alexandros Karatzoglou, Alex Smola, Kurt Hornik, Achim Zeileis
2004   Journal of Statistical Software
doi:10.18637/jss.v011.i09 [PDF]

via grobid
Keerthi S (2002) Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms. IEEE Transactions on Neural Networks 13(5):1225-1229

via fuzzy
Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel
S. Sathiya Keerthi, Chih-Jen Lin
2003   Neural Computation
doi:10.1162/089976603321891855  pmid:12816571 [PDF]

via grobid
Keerthi S, Sindhwani V, Chapelle O (2006) An efficient method for gradient- based adaptation of hyperparameters in SVM models. In: Advances in neural information processing systems, pp 673-680
Showing 1 - 30 of 53 references  next »