Arrangements of ideal type are inductively free release_cbgwbisjkfdp3cwbs6volfz76e

by Michael Cuntz, Gerhard Roehrle, Anne Schauenburg

Entity Metadata (schema)

abstracts[] {'sha1': '5670df62d68846e7cd8e16f5a4159cd7648c67ec', 'content': 'Extending earlier work by Sommers and Tymoczko, in 2016 Abe, Barakat, Cuntz,\nHoge, and Terao established that each arrangement of ideal type\nA_I stemming from an ideal I in the set of\npositive roots of a reduced root system is free. Recently, Röhrle showed that\na large class of the A_I satisfy the stronger property of\ninductive freeness and conjectured that this property holds for all\nA_I. In this article, we confirm this conjecture.', 'mimetype': 'text/plain', 'lang': 'en'}
{'sha1': '52ad8703db26286836a7405bfaf3b213cbe100bf', 'content': 'Extending earlier work by Sommers and Tymoczko, in 2016 Abe, Barakat, Cuntz,\nHoge, and Terao established that each arrangement of ideal type\n$\\mathcal{A}_\\mathcal{I}$ stemming from an ideal $\\mathcal{I}$ in the set of\npositive roots of a reduced root system is free. Recently, R\\"ohrle showed that\na large class of the $\\mathcal{A}_\\mathcal{I}$ satisfy the stronger property of\ninductive freeness and conjectured that this property holds for all\n$\\mathcal{A}_\\mathcal{I}$. In this article, we confirm this conjecture.', 'mimetype': 'application/x-latex', 'lang': 'en'}
container
container_id
contribs[] {'index': 0, 'creator_id': None, 'creator': None, 'raw_name': 'Michael Cuntz', 'given_name': None, 'surname': None, 'role': 'author', 'raw_affiliation': None, 'extra': None}
{'index': 1, 'creator_id': None, 'creator': None, 'raw_name': 'Gerhard Roehrle', 'given_name': None, 'surname': None, 'role': 'author', 'raw_affiliation': None, 'extra': None}
{'index': 2, 'creator_id': None, 'creator': None, 'raw_name': 'Anne Schauenburg', 'given_name': None, 'surname': None, 'role': 'author', 'raw_affiliation': None, 'extra': None}
ext_ids {'doi': None, 'wikidata_qid': None, 'isbn13': None, 'pmid': None, 'pmcid': None, 'core': None, 'arxiv': '1711.09760v2', 'jstor': None, 'ark': None, 'mag': None, 'doaj': None, 'dblp': None, 'oai': None, 'hdl': None}
files[] {'state': 'active', 'ident': 'pdyprtezrfbgpiebxz5rhlhh3a', 'revision': 'e7772cf1-c4a3-4ea0-9812-e16f828c36fb', 'redirect': None, 'extra': None, 'edit_extra': None, 'size': 184991, 'md5': '97dc5aa9d79412654068c64168fd5a3d', 'sha1': 'a63b7b4090397e763bce6729dcd32dc4d698a425', 'sha256': '2b4f96b17f729dcc4c834566f064610b0f1fb329403f8af06c41d29c65f1d542', 'urls': [{'url': 'https://arxiv.org/pdf/1711.09760v2.pdf', 'rel': 'repository'}, {'url': 'https://web.archive.org/web/20200914103506/https://arxiv.org/pdf/1711.09760v2.pdf', 'rel': 'webarchive'}], 'mimetype': 'application/pdf', 'content_scope': None, 'release_ids': ['cbgwbisjkfdp3cwbs6volfz76e'], 'releases': None}
filesets []
issue
language en
license_slug ARXIV-1.0
number
original_title
pages
publisher
refs []
release_date 2019-01-31
release_stage submitted
release_type article
release_year 2019
subtitle
title Arrangements of ideal type are inductively free
version v2
volume
webcaptures []
withdrawn_date
withdrawn_status
withdrawn_year
work_id wf7v3l7bt5g5doykhabid3xcwu
As JSON via API

Extra Metadata (raw JSON)

arxiv.base_id 1711.09760
arxiv.categories ['math.CO', 'math.GR']
arxiv.comments 10 pages. arXiv admin note: text overlap with arXiv:1606.00617