Nonparametric Density Estimation under Adversarial Losses release_bu34qw73cjdovoc2lb3vc2ob7y

by Shashank Singh, Ananya Uppal, Boyue Li, Chun-Liang Li, Manzil Zaheer, Barnabás Póczos

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 44 references (in 33ms)
[b0]

via grobid
Ehsan Abbasnejad, Javen Shi, and Anton van den Hengel. Deep lipschitz networks and dudley GANs, 2018. URL https://openreview.net/forum?id=rkw-jlb0W.
[b1]

via fuzzy
Scale-sensitive dimensions, uniform convergence, and learnability
N. Alon, S. Ben-David, N. Cesa-Bianchi, D. Haussler
IEEE Annual Symposium on Foundations of Computer Science
doi:10.1109/sfcs.1993.366858  dblp:conf/focs/AlonBCH93 
web.archive.org [PDF]
[b2]

via fuzzy
Two-Sample Test Statistics for Measuring Discrepancies Between Two Multivariate Probability Density Functions Using Kernel-Based Density Estimates
N.H. Anderson, P. Hall, D.M. Titterington
1994   Journal of Multivariate Analysis
doi:10.1006/jmva.1994.1033 
web.archive.org [PDF]
[b3]

via grobid
Martin Anthony and Peter L Bartlett. Neural network learning: Theoretical foundations. cambridge university press, 2009.
[b4]

via fuzzy
Wasserstein Generative Adversarial Networks
Martín Arjovsky, Soumith Chintala, Léon Bottou
2017   International Conference on Machine Learning
dblp:conf/icml/ArjovskyCB17 
[b5]

via grobid
Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American mathematical society, 68(3):337-404, 1950.
[b6]

via fuzzy
Generalization and Equilibrium in Generative Adversarial Nets (GANs) [article]
Sanjeev Arora, Rong Ge, Yingyu Liang, Tengyu Ma, Yi Zhang
2017    pre-print
version:v1  arXiv:1703.00573v1 
web.archive.org [PDF]
[b7]

via grobid
Alain Berlinet and Christine Thomas-Agnan. Reproducing kernel Hilbert spaces in probability and statistics. Springer Science & Business Media, 2011.
[b8]

via grobid
Gérard Biau and Luc Devroye. Lectures on the nearest neighbor method. Springer, 2015.
[b9]

via grobid
Geometrical Insights for Implicit Generative Modeling [article]
Leon Bottou and Martin Arjovsky and David Lopez-Paz and Maxime Oquab
2017    pre-print
version:v1  arXiv:1712.07822v1 
web.archive.org [PDF]
[b10]

via grobid
Lawrence D Brown, Cun-Hui Zhang, et al. Asymptotic nonequivalence of nonparametric experiments when the smoothness index is 1/2. The Annals of Statistics, 26(1):279-287, 1998.
[b11]

via grobid
Guillermo Canas and Lorenzo Rosasco. Learning probability measures with respect to optimal transport metrics. In Advances in Neural Information Processing Systems, pages 2492-2500, 2012.
[b12]

via grobid
Siddhartha Chib and Edward Greenberg. Understanding the Metropolis-Hastings algorithm. The american statistician, 49(4):327-335, 1995.
[b13]

via fuzzy
Monte Carlo Methods of Inference for Implicit Statistical Models
Peter J. Diggle, Richard J. Gratton
1984   Journal of the Royal Statistical Society: Series B (Methodological)
doi:10.1111/j.2517-6161.1984.tb01290.x 
[b14]

via grobid
David L Donoho, Iain M Johnstone, Gérard Kerkyacharian, and Dominique Picard. Density estimation by wavelet thresholding. The Annals of Statistics, pages 508-539, 1996.
[b15]

via fuzzy
Hypothesis Transfer Learning via Transformation Functions [article]
Simon Shaolei Du, Jayanth Koushik, Aarti Singh, Barnabas Poczos
2016    pre-print
version:v1  arXiv:1612.01020v1 
web.archive.org [PDF]
[b16]

via grobid
RM Dudley. Speeds of metric probability convergence. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 22(4):323-332, 1972.
[b17]

via grobid
Training generative neural networks via Maximum Mean Discrepancy optimization [article]
Gintare Karolina Dziugaite and Daniel M. Roy and Zoubin Ghahramani
2015    pre-print
version:v1  arXiv:1505.03906v1 
web.archive.org [PDF]
[b18]

via grobid
Sam Efromovich. Orthogonal series density estimation. Wiley Interdisciplinary Reviews: Computational Statistics, 2(4):467-476, 2010.
[b19]

via grobid
Dominik Maria Endres and Johannes E Schindelin. A new metric for probability distributions. IEEE Transactions on Information theory, 49(7):1858-1860, 2003.
[b20]

via grobid
David Pollard. Empirical processes: theory and applications. In NSF-CBMS regional conference series in probability and statistics, pages i-86. JSTOR, 1990.
[b21]

via grobid
Novi Quadrianto, James Petterson, and Alex J Smola. Distribution matching for transduction. In Advances in Neural Information Processing Systems, 2009.
[b22]

via fuzzy
On the Decreasing Power of Kernel and Distance based Nonparametric Hypothesis Tests in High Dimensions
Sashank J. Reddi, Aaditya Ramdas, Barnabas Poczos, Aarti Singh, Larry Wasserman
2018  
doi:10.1184/r1/6476201 
web.archive.org [PDF]
[b23]

via fuzzy
On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests
Aaditya Ramdas, Nicolás Trillos, Marco Cuturi
2017   Entropy
doi:10.3390/e19020047 
web.archive.org [PDF]
[b24]

via fuzzy
Stochastic Backpropagation and Approximate Inference in Deep Generative Models [article]
Danilo Jimenez Rezende, Shakir Mohamed, Daan Wierstra
2014    pre-print
version:v1  arXiv:1401.4082v1 
web.archive.org [PDF]
[b25]

via grobid
Christian P Robert. Monte Carlo methods. Wiley Online Library, 2004.
[b26]

via grobid
Minimax Distribution Estimation in Wasserstein Distance [article]
Shashank Singh, Barnabás Póczos
2018    pre-print
version:v1  arXiv:1802.08855v1 
web.archive.org [PDF]
[b27]

via grobid
Minimax Estimation of Quadratic Fourier Functionals [article]
Shashank Singh, Bharath K. Sriperumbudur, Barnabás Póczos
2018    pre-print
version:v1  arXiv:1803.11451v1 
web.archive.org [PDF]
[b28]

via grobid
Nickolay Smirnov. Table for estimating the goodness of fit of empirical distributions. The annals of mathematical statistics, 19(2):279-281, 1948.
[b29]

via grobid
Bharath Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Aapo Hyvärinen, and Revant Kumar. Density estimation in infinite dimensional exponential families. The Journal of Machine Learning Research, 18(1): 1830-1888, 2017.
Showing 1 - 30 of 44 references  next »