Budget Feasible Mechanisms on Matroids release_bk3ha6pdlzbenm22kdae6tcj4u

by Stefano Leonardi, Gianpiero Monaco, Piotr Sankowski, Qiang Zhang

Published in Algorithmica by Springer Science and Business Media LLC.

2020  

Abstract

<jats:title>Abstract</jats:title>Motivated by many practical applications, in this paper we study <jats:italic>budget feasible mechanisms</jats:italic> with the goal of procuring an independent set of a matroid. More specifically, we are given a matroid <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}=(E,{\mathcal {I}})$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:mi>E</mml:mi> <mml:mo>,</mml:mo> <mml:mi>I</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>. Each element of the ground set <jats:italic>E</jats:italic> is controlled by a selfish agent and the cost of the element is private information of the agent itself. A budget limited buyer has additive valuations over the elements of <jats:italic>E</jats:italic>. The goal is to design an incentive compatible budget feasible mechanism which procures an independent set of the matroid of largest possible value. We also consider the more general case of the pair <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}=(E,{\mathcal {I}})$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>M</mml:mi> <mml:mo>=</mml:mo> <mml:mo>(</mml:mo> <mml:mi>E</mml:mi> <mml:mo>,</mml:mo> <mml:mi>I</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> satisfying only the hereditary property. This includes matroids as well as matroid intersection. We show that, given a polynomial time deterministic algorithm that returns an <jats:inline-formula><jats:alternatives><jats:tex-math>$$\alpha $$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>α</mml:mi> </mml:math></jats:alternatives></jats:inline-formula>-approximation to the problem of finding a maximum-value independent set in <jats:inline-formula><jats:alternatives><jats:tex-math>$${\mathcal {M}}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>M</mml:mi> </mml:math></jats:alternatives></jats:inline-formula>, there exists an individually rational, truthful and budget feasible mechanism which is <jats:inline-formula><jats:alternatives><jats:tex-math>$$(3\alpha +1)$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>3</mml:mn> <mml:mi>α</mml:mi> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula>-approximated and runs in polynomial time, thus yielding also a 4-approximation for the special case of matroids.
In application/xml+jats format

Archived Files and Locations

application/pdf  1.7 MB
file_ctlsyn2u4veyrm5d7hbeym62he
link.springer.com (publisher)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2020-11-13
Language   en ?
Container Metadata
Not in DOAJ
In Keepers Registry
ISSN-L:  0178-4617
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 97a6d147-902b-4c23-9da9-ba08b8f5cb4a
API URL: JSON