Recognizing Instagram Filtered Images with Feature De-Stylization release_bielcqrqxrgffk3uh5c3wqjcye

by Zhe Wu, Zuxuan Wu, Bharat Singh, Larry Davis

Published in PROCEEDINGS OF THE THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE TWENTY-EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE by Association for the Advancement of Artificial Intelligence (AAAI).

2020   Volume 34, Issue 07, p12418-12425

Abstract

Deep neural networks have been shown to suffer from poor generalization when small perturbations are added (like Gaussian noise), yet little work has been done to evaluate their robustness to more natural image transformations like photo filters. This paper presents a study on how popular pretrained models are affected by commonly used Instagram filters. To this end, we introduce ImageNet-Instagram, a filtered version of ImageNet, where 20 popular Instagram filters are applied to each image in ImageNet. Our analysis suggests that simple structure preserving filters which only alter the global appearance of an image can lead to large differences in the convolutional feature space. To improve generalization, we introduce a lightweight de-stylization module that predicts parameters used for scaling and shifting feature maps to "undo" the changes incurred by filters, inverting the process of style transfer tasks. We further demonstrate the module can be readily plugged into modern CNN architectures together with skip connections. We conduct extensive studies on ImageNet-Instagram, and show quantitatively and qualitatively, that the proposed module, among other things, can effectively improve generalization by simply learning normalization parameters without retraining the entire network, thus recovering the alterations in the feature space caused by the filters.
In application/xml+jats format

Archived Files and Locations

application/pdf  2.6 MB
file_5hjvrmup2rcdjgfus7io6ucwpa
aaai.org (web)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2020-04-03
Proceedings Metadata
Not in DOAJ
Not in Keepers Registry
ISSN-L:  2159-5399
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 6f193e4b-a4b4-441f-8f2d-bf2d96c5a688
API URL: JSON