Quantifying the Adaptive Potential of a Nascent Bacterial Community release_ar6xsdxjyjgrzgslsmgmv3kxrm

by Joao A Ascensao, Kelly M Wetmore, Benjamin Good, Adam Arkin, Oskar Hallatschek

Released as a post by Cold Spring Harbor Laboratory.

2022  

Abstract

The fitness effects of all possible mutations available to an organism largely shapes the dynamics of evolutionary adaptation. Tremendous progress has been made in quantifying the strength and abundance of selected mutations available to single microbial species in simple environments, lacking strong ecological interactions. However, the adaptive potential of strains that are part of multi-strain communities remains largely unclear. We sought to fill this gap for a stable community of two closely related ecotypes ("L" and "S") shortly after they emerged within the E. coli Long-Term Evolution Experiment (LTEE). To this end, we engineered genome-wide barcoded transposon libraries and developed a computational inference pipeline to measure the fitness effects of all possible gene knockouts in the coexisting strains as well as their ancestor, for many different conditions. We found that the fitness effect of most gene knockouts sensitively depends on the genetic background and the ecological conditions, as set by environmental perturbations and the relative frequency of both ecotypes. Despite the idiosyncratic behavior of individual knockouts, we still see consistent statistical patterns of fitness effect variation across both genetic background and community composition. The background dependence of mutational effects appears to reflect widespread changes in which gene functions are important for determining fitness, for all but the most strongly interacting genes. Additionally, fitness effects are correlated with evolutionary outcomes for a number of conditions, possibly revealing shifting patterns of adaptation. Together, our results reveal how ecological and epistatic effects combine to drive adaptive potential in recently diverged, coexisting ecotypes.
In application/xml+jats format

Archived Files and Locations

application/pdf  29.0 MB
file_p7moborbb5dkplx6z46ctqchuu
www.biorxiv.org (repository)
web.archive.org (webarchive)
application/pdf  29.0 MB
file_qxkciuys5ndyhjbefyhunzdwry
www.biorxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  post
Stage   unknown
Date   2022-02-05
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: bf95c5c8-6c81-4b5f-bfdc-faea811ecd01
API URL: JSON