Vacuum Chamber at Cryogenic Temperatures release_ajpupe5znfgbri2gkh66xiggca

by Oleg Malyshev, Vincent Baglin, Erik Wallén

References

This release citing other releases
  1. Proceedings of CERN Accelerator School, Vacuum in Accelerators.2007.
  2. Observation of rotational transitions for H2, D2, and HD adsorbed on Cu(100) Phys. Rev. Lett..1982545 (DOI: 10.1103/physrevlett.48.545)
  3. Sticking in the quantum regime: H2 and D2 on Cu(100) Phys. Rev. B.19898146 (DOI: 10.1103/physrevb.40.8146)
  4. Henry's law: a historical view J. Chem. Educ..1993
  5. Physical Adsorption of Gases.1962.
  6. Kapillarchemie Leipzig.1930153
  7. Scientific Foundations of Vacuum Technique.1962.
  8. Scientific Foundations of Vacuum Technique.1962.
  9. Physical adsorption of nitrogen on Pyrex at very low pressures J. Chem. Phys..19611850 (DOI: 10.1063/1.1701099)
  10. Surface area determination from the adsorption of nitrogen, argon and krypton Dokl. Akad. Nauk. SSSR.1961405
  11. Correlation of the equilibrium adsorption isotherms of low temperature cryodeposits Cryogenics.1971120 (DOI: 10.1016/0011-2275(71)90292-x)
  12. Tölle V.(1971).Adsorptionsgleichgewichte von Wasserstoff and kondensiertem Methan Äthan und Propan. Berlin Technical University Dissertation 1971 990003533550302884.
  13. Scientific Foundations of Vacuum Technique.1962.
  14. Physical Adsorption of Gases.1962.
  15. Physical Adsorption of Gases.1962.
  16. Evaluation of microporous materials with a new isotherm Proc. Acad. Sci. USSR.1947327
  17. Russ. J. Phys. Chem..1965.
  18. Adsorption in micropores J. Colloid Interface Sci..1967487 (DOI: 10.1016/0021-9797(67)90195-6)
  19. A method for the determination of specific surfaces from the adsorption of gases Proc. Acad. Sci. USSR.1957603
  20. Physical adsorption isotherms extending from ultrahigh vacuum to vapor pressure J. Phys. Chem..19692720 (DOI: 10.1021/j100842a045)
  21. Adsorption isotherms of H2 and mixtures of H2, CH4, CO, and CO2 on copper plated stainless steel at 4.2 K J. Vac. Sci. Technol., A.19962916 (DOI: 10.1116/1.580245)
  22. Adsorption isotherms of He and H2 at liquid He temperatures J. Vac. Sci. Technol., A.1997265 (DOI: 10.1116/1.580523)
  23. Experimental test of the propagation of a He pressure front in a long, cryogenically cooled tube J. Vac. Sci. Technol., A.19972949 (DOI: 10.1116/1.580890)
  24. Measurements of the helium propagation at 4.4 K in a 480 m long stainless steel pipe J. Vac. Sci. Technol., A.19981145 (DOI: 10.1116/1.581249)
  25. Vapor pressure of hydrogen, deuterium, and hydrogen deuteride and dew‐point pressures of their mixtures J. Res. Nat. Bur. Stand..195163 (DOI: 10.6028/jres.047.009)
  26. Influence of thermal radiation on the vapor pressure of condensed hydrogen (and isotopes) between 2 and 4.5 K J. Vac. Sci. Technol., A.19761172 (DOI: 10.1116/1.569063)
  27. Proceedings of IPAC 2015.2015.
  28. Wilfert S.andPongrac I.(2017).The vacuum system of SIS100 at FAIR. A Talk at EUCARD‐2 Workshop Beam Dynamics Meets Vacuum Collimations and Surfaces 8–10 March 2017. Karlsruhe Institute of Technology (KIT) Karlsruhe Germany.https://indico.gsi.de/event/5393/session/7/contribution/14/material/slides/0.pdf
  29. The Physical Basis of Ultrahigh Vacuum.1993.
  30. Thermal desorption of gases Vacuum.1962203 (DOI: 10.1016/0042-207x(62)90978-8)
  31. Anashin V. Evsigneev A. Malyshev O. et al. (1993).Summary of resent photodesorption experiments at VEPP‐2M. SSCL‐N‐825 June 1993.
  32. Anashin V. Malyshev O. Osipov V. et al. (1993).Cold beam tube photodesorption experiments for SSCL 20 TeV proton collider. 40th National Symposium AVS Orlando November 1993.
  33. Turner W.(1994).Beam tube vacuum in future superconducting proton colliders. SSCL‐Preprint‐564 October 1994. (DOI: 10.2172/10124096)
  34. Investigation of synchrotron radiation‐induced photodesorption in cryosorbing quasiclosed geometry J. Vac. Sci. Technol., A.19942917 (DOI: 10.1116/1.578965)
  35. Cold beam tube photodesorption and related experiments for SSCL 20 TeV proton collider J. Vac. Sci. Technol., A.19941663 (DOI: 10.1116/1.579033)
  36. Proceedings of EPAC‐94.1994.
  37. Proceedings of EPAC‐94.1994.
  38. Synchrotron radiation induced gas desorption from a prototype Large Hadron Collider beam screen at cryogenic temperatures J. Vac. Sci. Technol., A.19962618 (DOI: 10.1116/1.579989)
  39. Malyshev O.B.andCollins I.R.(2001).Dynamic gas density in the LHC interaction regions 1&5 and 2&8 for optics version 6.3. LHC‐PROJECT‐NOTE‐274 December 2001 CERN 34 pages.
  40. Proceedings of EPAC 2000.2000.
  41. Proceedings of EPAC 2002.2002.
  42. Molecular desorption by synchrotron radiation and sticking coefficient at cryogenic temperatures for H2, CH4, CO and CO2 Vacuum.2002421 (DOI: 10.1016/s0042-207x(02)00226-9)
  43. Proceedings of EPAC 2002.2002.
  44. The study of photodesorption processes for cryosorbed CO2 Nucl. Instrum. Methods Phys. Res., Sect. A.1998258 (DOI: 10.1016/s0168-9002(97)01042-5)
  45. Photon induced molecular desorption from condensed gases Vacuum.1997785 (DOI: 10.1016/s0042-207x(97)00072-9)
  46. A study of the photodesorption process for cryosorbed layers of H2, CH4, CO or CO2 at various temperatures between 3 and 68 K Vacuum.1999269 (DOI: 10.1016/s0042-207x(98)00365-0)
  47. Photon stimulated desorption and effect of cracking of condensed molecules in a cryogenic vacuum system Vacuum.200115 (DOI: 10.1016/s0042-207x(00)00239-6)
  48. Baglin V.(1997).Etude de la photo‐désorption de surfaces techniques aux températures cryogéniques. PhD thesis. University Denis Diderot Paris.
  49. The thermal accommodation coefficients of helium, neon, and argon on an ice surface Surf. Sci..1970249 (DOI: 10.1016/0039-6028(70)90123-8)
  50. Thermal accommodation coefficients J. Phys. Chem..19801431 (DOI: 10.1021/j100449a002)
  51. Energy accommodation coefficient extracted from acoustic resonator Experiments J. Vac. Sci. Technol., A.2016 (DOI: 10.1116/1.4966620)
  52. Heat transfer through a rarefied gas confined between two coaxial cylinders with high radius ratio J. Vac. Sci. Technol., A.20062087 (DOI: 10.1116/1.2353847)
  53. Potier J.P.andRinolfi L.(1998). The LEP pre‐injector as a multipurpose facility.Proceedings of EPAC'98 Stockholm Sweden 22–26 June 1998.
  54. CERN‐2004‐003.2004.
  55. Baglin V.(2004). Vacuum transients during LHC operation.Proceedings of LHC Project Workshop Chamonix France February 2004.
  56. Industrial surfaces behaviour related to the adsorption and desorption of hydrogen at cryogenic temperature Vacuum.200143 (DOI: 10.1016/s0042-207x(00)00244-x)
  57. Baglin V.(1997).Mesure de la rugosité de surfaces techniques à l'aide de la méthode BET. Vacuum Technical Note 97‐03 January 1997 CERN Geneva.
  58. Cryopumping – Theory and Practice.1989.
  59. Capture Pumping Technology.2001.
  60. The use of active carbons as cryosorbent Colloids Surf., A.2001
  61. Vacuum performance of a beam screen with charcoal for the LHC Long Straight Sections Vacuum.2004379 (DOI: 10.1016/j.vacuum.2003.09.006)
  62. RHIC vacuum systems Vacuum.1999347 (DOI: 10.1016/s0042-207x(98)00368-6)
  63. Model of an 80 K liner vacuum system for the 4.2 K cold bore of the superconducting super collider 20 TeV proton collider J. Vac. Sci. Technol., A.19952241 (DOI: 10.1116/1.579549)
  64. Proceedings of IPAC 2011.2011.
  65. Vacuum performance of a carbon fibre cryosorber for the LHC LSS beam screen Vacuum.2004293 (DOI: 10.1016/j.vacuum.2004.03.010)
  66. Proceedings of EPAC 2004.2004.
  67. Proceedings of IPAC 2016.
  68. Lamure A.‐L. Baglin V. Chiggiato P. Henrist B.(2017). Adsorption/desorption from amorphous carbon coatings at cryogenic temperatures.AVS 64th International Symposium and Exhibition 29 October to 3 November 2017 Tampa FL USA.
  69. Molecular cryosorption properties of porous copper, anodised aluminium and charcoal at temperatures between 10 and 20 K Vacuum.200423 (DOI: 10.1016/j.vacuum.2004.05.016)
  70. Rao M.G. Kneisel P. Susta J.(1994). Cryosorption pumping of H2and He with metals and metals oxides at 4.3 K.Proceedings of the 15th International Cryogenic Engineering Conference Genova Italy 6–10 June 1994.
  71. On the compatibility of porous surfaces with cryogenic vacuum in future high‐energy particle accelerators Appl. Phys. Lett..2019153103 (DOI: 10.1063/1.5085754)