Synaptophysin Is a Reliable Marker for Axonal Damage release_a562eqjpybhxlkpcmykv32ty5m

by Viktoria Gudi, Lijie Gai, Vanessa Herder, Laura Salinas Tejedor, Markus Kipp, Sandra Amor, Kurt-Wolfram Sühs, Florian Hansmann, Andreas Beineke, Wolfgang Baumgärtner, Martin Stangel, Thomas Skripuletz

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 106 references (in 288ms)
[nlw114-B1]

via crossref
The mechanisms of kinesin motor motility: lessons from the monomeric motor KIF1A
Nobutaka Hirokawa, Ryo Nitta, Yasushi Okada
2009   Nature reviews. Molecular cell biology
doi:10.1038/nrm2807  pmid:19935670 
[nlw114-B2]

via crossref
Axonal transport and the delivery of pre-synaptic components
Ann YN Goldstein, Xinnan Wang, Thomas L Schwarz
2008   Current Opinion in Neurobiology
doi:10.1016/j.conb.2008.10.003  pmcid:PMC2653082  pmid:18950710 
web.archive.org [PDF]
[nlw114-B3]

via crossref
Retrograde transport by the microtubule-associated protein MAP 1C
Bryce M. Paschal, Richard B. Vallee
1987   Nature
doi:10.1038/330181a0  pmid:3670402 
[nlw114-B4]

via crossref
Dynein: An ancient motor protein involved in multiple modes of transport
Richard B. Vallee, John C. Williams, Dileep Varma, Lora E. Barnhart
2003   Journal of Neurobiology
doi:10.1002/neu.10314  pmid:14704951 
[nlw114-B5]

via crossref
Axonal transport defects: a common theme in neurodegenerative diseases
Subhojit Roy, Bin Zhang, Virginia M.-Y. Lee, John Q. Trojanowski
2005   Acta Neuropathologica
doi:10.1007/s00401-004-0952-x  pmid:15645263 
web.archive.org [PDF]
[nlw114-B6]

via crossref
Rapid and Intermittent Cotransport of Slow Component-b Proteins
S. Roy, M. J. Winton, M. M. Black, J. Q. Trojanowski, V. M.-Y. Lee
2007   Journal of Neuroscience
doi:10.1523/jneurosci.4999-06.2007  pmid:17376974 
web.archive.org [PDF]
[nlw114-B7]

via crossref
White matter as a transport system
T. Paus, M. Pesaresi, L. French
2014   Neuroscience
doi:10.1016/j.neuroscience.2014.01.055  pmid:24508743 
[nlw114-B8]

via crossref
Axonal transport of membranous and nonmembranous cargoes
Anthony Brown
2003   Journal of Cell Biology
doi:10.1083/jcb.200212017  pmcid:PMC2173776  pmid:12642609 
web.archive.org [PDF]
[nlw114-B9]

via crossref
Role of Axonal Transport in Neurodegenerative Diseases
Kurt J. De Vos, Andrew J. Grierson, Steven Ackerley, Christopher C.J. Miller
2008   Annual Review of Neuroscience
doi:10.1146/annurev.neuro.31.061307.090711  pmid:18558852 
[nlw114-B10]

via crossref
Axonal transport deficits and neurodegenerative diseases
Stéphanie Millecamps, Jean-Pierre Julien
2013   Nature Reviews Neuroscience
doi:10.1038/nrn3380  pmid:23361386 
[nlw114-B11]

via crossref
Changes of β-Amyloid Precursor Protein after Compression Trauma to the Spinal Cord: An Experimental Study in the Rat Using Immunohistochemistry
GUI LIN LI, MOHAMMAD FAROOQUE, ANDERS HOLTZ, YNGVE OLSSON
1995   Journal of Neurotrauma
doi:10.1089/neu.1995.12.269  pmid:7473801 
[nlw114-B12]

via crossref
Early detection of axonal injury after human head trauma using immunocytochemistry for ?-amyloid precursor protein
F. E. Sherriff, L. R. Bridges, S. Sivaloganathan
1994   Acta Neuropathologica
doi:10.1007/bf00386254  pmid:8140894 
[nlw114-B13]

via crossref
Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time
T. Kuhlmann
2002   Brain
doi:10.1093/brain/awf235  pmid:12244078 
web.archive.org [PDF]
[nlw114-B14]

via crossref
Biology and pathophysiology of the amyloid precursor protein
Hui Zheng, Edward H Koo
2011   Molecular Neurodegeneration
doi:10.1186/1750-1326-6-27  pmcid:PMC3098799  pmid:21527012 
web.archive.org [PDF]
[nlw114-B15]

via crossref
Insights into the physiological function of the β-amyloid precursor protein: beyond Alzheimer's disease
Edgar Dawkins, David H. Small
2014   Journal of Neurochemistry
doi:10.1111/jnc.12675  pmcid:PMC4314671  pmid:24517464 
web.archive.org [PDF]
[nlw114-B16]

via crossref
Precursor of amyloid protein in Alzheimer disease undergoes fast anterograde axonal transport.
E. H. Koo, S. S. Sisodia, D. R. Archer, L. J. Martin, A. Weidemann, K. Beyreuther, P. Fischer, C. L. Masters (+ more)
1990   Proceedings of the National Academy of Sciences of the United States of America
doi:10.1073/pnas.87.4.1561  pmcid:PMC53515  pmid:1689489 
web.archive.org [PDF]
[nlw114-B17]

via crossref
Axonal Transport of Amyloid Precursor Protein Is Mediated by Direct Binding to the Kinesin Light Chain Subunit of Kinesin-I
Adeela Kamal, Gorazd B Stokin, Zhaohaui Yang, Chun-Hong Xia, Lawrence S.B Goldstein
2000   Neuron
doi:10.1016/s0896-6273(00)00124-0  pmid:11144355 
web.archive.org [PDF]
[nlw114-B18]

via crossref
Markers of axonal injury in post mortem human brain
F. E. Sherriff, L. R. Bridges, S. M. Gentleman, S. Sivaloganathan, S. Wilson
1994   Acta Neuropathologica
doi:10.1007/bf00389495  pmid:7847072 
[nlw114-B19]

via crossref
Antibodies to the C-terminus of the β-amyloid precursor protein (APP): a site specific marker for the detection of traumatic axonal injury
James R Stone, Richard H Singleton, John T Povlishock
2000   Brain Research
doi:10.1016/s0006-8993(00)02485-9  pmid:10899295 
[nlw114-B20]

via crossref
Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ.
L. A. Sternberger, N. H. Sternberger
1983   Proceedings of the National Academy of Sciences of the United States of America
doi:10.1073/pnas.80.19.6126  pmcid:PMC534374  pmid:6577472 
web.archive.org [PDF]
[nlw114-B21]

via crossref
Axonal Transection in the Lesions of Multiple Sclerosis
Bruce D. Trapp, John Peterson, Richard M. Ransohoff, Richard Rudick, Sverre Mörk, Lars Bö
1998   New England Journal of Medicine
doi:10.1056/nejm199801293380502  pmid:9445407 
web.archive.org [PDF]
[nlw114-B22]

via crossref
Axonal Loss and Neurofilament Phosphorylation Changes Accompany Lesion Development and Clinical Progression in Multiple Sclerosis
Lucas Schirmer, Jack P. Antel, Wolfgang Brück, Christine Stadelmann
2011   Brain Pathology
doi:10.1111/j.1750-3639.2010.00466.x  pmid:21114565 
[nlw114-B23]

via crossref
Axonal regeneration in old multiple sclerosis plaques. Immunohistochemical study with monoclonal antibodies to phosphorylated and non-phosphorylated neurofilament proteins
1989   Acta Neuropathol
volume:79 
[nlw114-B24]

via crossref
Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells
Sylvie M. de Waegh, Virginia M.-Y. Lee, Scott T. Brady
1992   Cell
doi:10.1016/0092-8674(92)90183-d  pmid:1371237 
[nlw114-B25]

via crossref
Regulation of neurofilament dynamics by phosphorylation
Thomas B. Shea, Walter K.-H. Chan
2008   European Journal of Neuroscience
doi:10.1111/j.1460-9568.2008.06165.x  pmid:18412610 
[b25]

via fuzzy
Neurofilament Phosphorylation during Development and Disease: Which Came First, the Phosphorylation or the Accumulation?
Jeffrey M. Dale, Michael L. Garcia
2012   Journal of Amino Acids
doi:10.1155/2012/382107  pmcid:PMC3337605  pmid:22570767 
web.archive.org [PDF]
[nlw114-B27]

via crossref
Myelin-associated glycoprotein modulates expression and phosphorylation of neuronal cytoskeletal elements and their associated kinases
Suzanne M. Dashiell, Sandra L. Tanner, Harish C. Pant, Richard H. Quarles
2002   Journal of Neurochemistry
doi:10.1046/j.1471-4159.2002.00927.x  pmid:12068074 
[nlw114-B28]

via crossref
Rapid movement of axonal neurofilaments interrupted by prolonged pauses
Lei Wang, Chung-liang Ho, Dongming Sun, Ronald K.H. Liem, Anthony Brown
2000   Nature Cell Biology
doi:10.1038/35004008  pmid:10707083 
web.archive.org [PDF]
[nlw114-B29]

via crossref
Neurofilaments Are Transported Rapidly But Intermittently in Axons: Implications for Slow Axonal Transport
Subhojit Roy, Pilar Coffee, George Smith, Ronald K. H. Liem, Scott T. Brady, Mark M. Black
2000   Journal of Neuroscience
doi:10.1523/jneurosci.20-18-06849.2000  pmid:10995829 
web.archive.org [PDF]
[b29]

via grobid
Siedler DG, Chuah MI, Kirkcaldie MT, et al. Diffuse axonal injury in brain trauma: Insights from alterations in neurofilaments. Front Cell Neurosci 2014;8:429
Showing 1 - 30 of 106 references  next »