Steering biogas performance by implementation of bioelectrochemical cell (BEC) technology release_7xhsjqbwi5an7aj3yu5v3ibnvi

by Anna Prokhorova

References

NOTE: currently batch computed and may include additional references sources, or be missing recent changes, compared to entity reference list.
Fuzzy reference matching is a work in progress!
Read more about quality, completeness, and caveats in the fatcat guide.
Showing 1 - 30 of 168 references (in 105ms)
[b0]

via grobid
Bond DR, and Lovley DR. 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl Environ Microbiol 69(3):1548-1555.
[b1]

via fuzzy
Metabolic Efficiency of Geobacter sulfurreducens Growing on Anodes with Different Redox Potentials
Julian Bosch, Keun-Young Lee, Siang-Fu Hong, Falk Harnisch, Uwe Schröder, Rainer U. Meckenstock
2014   Current Microbiology
doi:10.1007/s00284-014-0539-2  pmid:24554342 
[b2]

via grobid
Braun R. 1982. Biogas -Methangärung organischer Abfallstoffe. (Springer Vienna).
[b3]

via fuzzy
Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities
M. Breuer, K. M. Rosso, J. Blumberger, J. N. Butt
2014   Journal of the Royal Society Interface
doi:10.1098/rsif.2014.1117  pmcid:PMC4277109  pmid:25411412 
web.archive.org [PDF]
[b4]

via grobid
Brutinel ED, and Gralnick JA. 2012. Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Appl Microbiol Biotechnol 93(1):41-48.
[b5]

via grobid
Butler JE, Young ND, and Lovley DR. 2010. Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes. BMC genomics 11:40.
[b6]

via grobid
Caccavo F, Jr., Lonergan DJ, Lovley DR, Davis M, Stolz JF, and McInerney MJ. 1994. Geobacter sulfurreducens sp. nov., a hydrogen-and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60(10):3752-3759.
[b7]

via grobid
Chang IS, Jang JK, Gil GC, Kim M, Kim HJ, Cho BW, and Kim BH. 2004. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens Bioelectron 19(6):607-613.
[b8]

via grobid
Chang IS, Moon H, Jang JK, and Kim BH. 2005. Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosens Bioelectron 20(9):1856-1859.
[b9]

via grobid
Chaudhuri SK, and Lovley DR. 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature biotechnology 21(10):1229-1232.
[b10]

via grobid
Cheng S, Liu H, and Logan BE. 2006. Increased performance of single-chamber microbial fuel cells using an improved cathode structure. Electrochemistry Communications 8(3):489-494.
[b11]

via grobid
Chiao M, Lam K, Su Y, and Lin L. 2002. A miniaturized microbial fuel cell. Technical digest of solid state sensors and actuators workshop. Hilton Head Island:59-60.
[b12]

via grobid
Clauwaert P, Aelterman P, Pham TH, De Schamphelaire L, Carballa M, Rabaey K, and Verstraete W. 2008. Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79(6):901-913.
[b13]

via grobid
Coppi MV, Leang C, Sandler SJ, and Lovley DR. 2001. Development of a genetic system for Geobacter sulfurreducens. Appl Environ Microbiol 67(7):3180-3187.
[b14]

via grobid
Coppi MV, O'Neil RA, and Lovley DR. 2004. Identification of an Uptake Hydrogenase Required for Hydrogen-Dependent Reduction of Fe(III) and Other Electron Acceptors by Geobacter sulfurreducens. Journal of Bacteriology 186(10):3022-3028.
[b15]

via fuzzy
Growth of Geobacter sulfurreducens with Acetate in Syntrophic Cooperation with Hydrogen-Oxidizing Anaerobic Partners
Ralf Cord-Ruwisch, Derek R. Lovley, Bernhard Schink
1998   Applied and Environmental Microbiology
doi:10.1128/aem.64.6.2232-2236.1998 
[b16]

via grobid
Cruz-Garcia C, Murray AE, Klappenbach JA, Stewart V, and Tiedje JM. 2007. Respiratory nitrate ammonification by Shewanella oneidensis MR-1. J Bacteriol 189(2):656-662.
[b17]

via grobid
Czaran T, and Hoekstra RF. 2009. Microbial communication, cooperation and cheating: quorum sensing drives the evolution of cooperation in bacteria. PLoS One 4(8):e6655.
[b18]

via fuzzy
Biofuel cells—Recent advances and applications
Frank Davis, Séamus P.J. Higson
2007   Biosensors & bioelectronics
doi:10.1016/j.bios.2006.04.029  pmid:16781864 
web.archive.org [PDF]
[b19]

via fuzzy
Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion
Jo De Vrieze, Sylvia Gildemyn, Jan B.A. Arends, Inka Vanwonterghem, Kim Verbeken, Nico Boon, Willy Verstraete, Gene W. Tyson (+ more)
2014   Water Research
doi:10.1016/j.watres.2014.01.044  pmid:24576697 
web.archive.org [PDF]
[b20]

via grobid
Demirel B, Neumann L, and Scherer P. 2008. Microbial Community Dynamics of a Continuous Mesophilic Anaerobic Biogas Digester Fed with Sugar Beet Silage. Engineering in Life Sciences 8(4):390-398.
[b21]

via grobid
Deppenmeier U, and Muller V. 2008. Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results and problems in cell differentiation 45:123-152.
[b22]

via fuzzy
Characterization of microbial current production as a function of microbe–electrode-interaction
Kerstin Dolch, Joana Danzer, Tobias Kabbeck, Benedikt Bierer, Johannes Erben, Andreas H. Förster, Jan Maisch, Peter Nick (+ more)
2014   Bioresource Technology
doi:10.1016/j.biortech.2014.01.112  pmid:24566287 
web.archive.org [PDF]
[b23]

via grobid
Dolch K, Wuske J, and Gescher J. 2016. Genomic Barcode-Based Analysis of Exoelectrogens in Wastewater Biofilms Grown on Anode Surfaces. J Microbiol Biotechnol 26(3):511-520.
[b24]

via grobid
Dunny GM, Brickman TJ, and Dworkin M. 2008. Multicellular behavior in bacteria: communication, cooperation, competition and cheating. BioEssays : news and reviews in molecular, cellular and developmental biology 30(4):296-298.
[b25]

via fuzzy
Constraint-Based Modeling of Carbon Fixation and the Energetics of Electron Transfer in Geobacter metallireducens
Adam M. Feist, Harish Nagarajan, Amelia-Elena Rotaru, Pier-Luc Tremblay, Tian Zhang, Kelly P. Nevin, Derek R. Lovley, Karsten Zengler (+ more)
2014   PLoS Computational Biology
doi:10.1371/journal.pcbi.1003575  pmcid:PMC3998878  pmid:24762737 
archive.org [PDF]
[b26]

via fuzzy
Mind the gap: cytochrome interactions reveal electron pathways across the periplasm ofShewanella oneidensisMR-1
B. M. Fonseca, C. M. Paquete, S. E. Neto, I. Pacheco, C. M. Soares, R. O. Louro
2013   Biochemical Journal
doi:10.1042/bj4510343u 
web.archive.org [PDF]
[b27]

via grobid
Fredrickson JK, Romine MF, Beliaev AS, Auchtung JM, Driscoll ME, Gardner TS, Nealson KH, Osterman AL, Pinchuk G, Reed JL et al. . 2008. Towards environmental systems biology of Shewanella. Nat Rev Micro 6(8):592-603.
[b28]

via grobid
Holmes DE, Bond DR, and Lovley DR. 2004. Electron Transfer by Desulfobulbus propionicus to Fe(III) and Graphite Electrodes. Applied and Environmental Microbiology 70(2):1234-1237.
[b29]

via grobid
Holmes DE, Chaudhuri SK, Nevin KP, Mehta T, Methe BA, Liu A, Ward JE, Woodard TL, Webster J, and Lovley DR. 2006. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol 8(10):1805-1815.
Showing 1 - 30 of 168 references  next »