Learning Low-Dimensional Representations of Medical Concepts release_7oxesiahsjbivguvocsf2sohua

by Youngduck Choi, Chill Yi-I Chiu, David Sontag

Entity Metadata (schema)

abstracts [{'sha1': '62fff9295c7c1b3bc959eb2f51fdb0f7f0675180', 'content': 'We show how to learn low-dimensional representations (embeddings) of a wide range of concepts in medicine, including diseases (e.g., ICD9 codes), medications, procedures, and laboratory tests. We expect that these embeddings will be useful across medical informatics for tasks such as cohort selection and patient summarization. These embeddings are learned using a technique called neural language modeling from the natural language processing community. However, rather than learning the embeddings solely from text, we show how to learn the embeddings from claims data, which is widely available both to providers and to payers. We also show that with a simple algorithmic adjustment, it is possible to learn medical concept embeddings in a privacy preserving manner from co-occurrence counts derived from clinical narratives. Finally, we establish a methodological framework, arising from standard medical ontologies such as UMLS, NDF-RT, and CCS, to further investigate the embeddings and precisely characterize their quantitative properties.', 'mimetype': 'text/plain', 'lang': 'en'}]
container
container_id
contribs [{'index': 0, 'creator_id': None, 'creator': None, 'raw_name': 'Youngduck Choi', 'given_name': 'Youngduck', 'surname': 'Choi', 'role': 'author', 'raw_affiliation': 'New York University, New York, NY.', 'extra': {}}, {'index': 1, 'creator_id': None, 'creator': None, 'raw_name': 'Chill Yi-I Chiu', 'given_name': 'Chill Yi-I', 'surname': 'Chiu', 'role': 'author', 'raw_affiliation': 'New York University, New York, NY.', 'extra': {}}, {'index': 2, 'creator_id': None, 'creator': None, 'raw_name': 'David Sontag', 'given_name': 'David', 'surname': 'Sontag', 'role': 'author', 'raw_affiliation': 'New York University, New York, NY.', 'extra': {}}]
edit_extra
ext_ids {'doi': None, 'wikidata_qid': None, 'isbn13': None, 'pmid': '27570647', 'pmcid': 'PMC5001761', 'core': None, 'arxiv': None, 'jstor': None, 'ark': None, 'mag': None, 'doaj': None, 'dblp': None, 'oai': None, 'hdl': None}
files [{'state': 'active', 'ident': 'k7gcnrd3grbffhvw52bu6cndsi', 'revision': '3088cde2-5c9c-4c75-9d12-42419ed40841', 'redirect': None, 'extra': None, 'edit_extra': None, 'size': 339163, 'md5': 'a1f820831e5a89e5ab217150ea7486b3', 'sha1': '36e83ef515ef5d6cdb5db827f11bab22155d57a8', 'sha256': '78016ab443e663ad7daddacc06f8b3f9a55de1b118e31f2cfd3f04f5871804db', 'urls': [{'url': 'http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5001761&blobtype=pdf', 'rel': 'repository'}, {'url': 'https://web.archive.org/web/20200206033732/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5001761&blobtype=pdf', 'rel': 'webarchive'}], 'mimetype': 'application/pdf', 'content_scope': None, 'release_ids': ['7oxesiahsjbivguvocsf2sohua'], 'releases': None}]
filesets []
ident 7oxesiahsjbivguvocsf2sohua
issue
language en
license_slug
number
original_title
pages 41-50
publisher
redirect
refs [{'index': 0, 'target_release_id': 'mntmdbzirfcoxnup3hno77d6ve', 'extra': {'pmid': '25160253', 'unstructured': 'Stud Health Technol Inform. 2014;205:584-8'}, 'key': None, 'year': None, 'container_name': None, 'title': None, 'locator': None}, {'index': 1, 'target_release_id': 'jrw2f7de6bagbbj7nuj7mipef4', 'extra': {'pmid': '25977789', 'unstructured': 'Sci Data. 2014 Sep 16;1:140032'}, 'key': None, 'year': None, 'container_name': None, 'title': None, 'locator': None}]
release_date 2016-07-20
release_stage published
release_type article-journal
release_year 2016
revision 9d3f8aa8-9d08-4060-a49f-f3294c815530
state active
subtitle
title Learning Low-Dimensional Representations of Medical Concepts
version
volume 2016
webcaptures []
withdrawn_date
withdrawn_status
withdrawn_year
work_id ceyiwy4ijrhehag2z3earahoqy
As JSON via API

Extra Metadata (raw JSON)

pubmed.pub_types ['Journal Article']