Hardware-in-the-Loop to Test an MPPT Technique of Solar Photovoltaic System: A Support Vector Machine Approach release_7jxjfgag5besjkns2eeaaliuri

by Catalina Gonzalez Castaño, James Marulanda, Carlos Restrepo, Samir Kouro, Alfonso Alzate, Jose Rodriguez

Published in Sustainability by MDPI AG.

2021   Volume 13, p3000

Abstract

This paper proposes a new method for maximum power point tracking (MPPT) of the photovoltaic (PV) system while using a DC-DC boost converter. The conventional perturb and observe (P&O) method has a fast tracking response, but it presents oscillation around the maximum power point (MPP) in steady state. Therefore, to satisfy transient and steady-state responses, this paper presents a MPPT method using support vector machines (SVMs). The use of SVM will help to improve the tracking speed of maximum power point of the PV system without oscillations near MPP. A boost converter is used to implement the MPPT method, where the input voltage of the DC-DC converter is regulated using a double loop where the inner loop is a current control that is based on passivity. The MPPT structure is validated by hardware in the loop, a real time and high-speed simulator (PLECS RT Box 1), and a digital signal controller (DSC) are used to model the PV system and implement the control strategies, respectively. The proposed strategy presents low complexity and it is implemented in a commercial low-cost DSC (TI 28069M). The performance of the MPPT proposed is presented under challenging experimental profiles with solar irradiance and temperature variations across the panel. In addition, the performance of the proposed method is compared with the P&O method, which is traditionally most often used in MPPT under demanding tests, in order to demonstrate the superiority of the strategy presented.
In application/xml+jats format

Archived Files and Locations

application/pdf  15.9 MB
file_mknwhfxkqndojdj25zowokv4je
res.mdpi.com (publisher)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article-journal
Stage   published
Date   2021-03-10
Language   en ?
Container Metadata
Open Access Publication
In DOAJ
In ISSN ROAD
In Keepers Registry
ISSN-L:  2071-1050
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 2e2d4b9e-1874-42d0-87ba-f92b1cdd002a
API URL: JSON