A Bayesian Approach to Constraint Based Causal Inference release_72jxpqxrnjclfjrp6totwt5bzu

by Tom Claassen, Tom Heskes

Released as a report .

2012  

Abstract

We target the problem of accuracy and robustness in causal inference from finite data sets. Some state-of-the-art algorithms produce clear output complete with solid theoretical guarantees but are susceptible to propagating erroneous decisions, while others are very adept at handling and representing uncertainty, but need to rely on undesirable assumptions. Our aim is to combine the inherent robustness of the Bayesian approach with the theoretical strength and clarity of constraint-based methods. We use a Bayesian score to obtain probability estimates on the input statements used in a constraint-based procedure. These are subsequently processed in decreasing order of reliability, letting more reliable decisions take precedence in case of con icts, until a single output model is obtained. Tests show that a basic implementation of the resulting Bayesian Constraint-based Causal Discovery (BCCD) algorithm already outperforms established procedures such as FCI and Conservative PC. It can also indicate which causal decisions in the output have high reliability and which do not.
In text/plain format

Archived Files and Locations

application/pdf  328.4 kB
file_xwgmvtmsh5dzrcj37wzj3mycje
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  report
Stage   submitted
Date   2012-10-16
Version   v1
Language   en ?
Number  UAI-P-2012-PG-207-216
arXiv  1210.4866v1
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: c64f92fc-345e-40ca-9460-f56dadd61176
API URL: JSON