Locating Temporal Functional Dynamics of Visual Short-Term Memory Binding using Graph Modular Dirichlet Energy release_6rgjaixvrvdb3og42ufltrum4i

by Keith Smith, Benjamin Ricaud, Nauman Shahid, Stephen Rhodes, John M. Starr, Agustin Ibanez, Mario A. Parra, Javier Escudero, Pierre Vandergheynst

Released as a article .

2016  

Abstract

Visual short-term memory binding tasks are a promising early marker for Alzheimer's disease (AD). To uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks performed by healthy young volunteers. We probe the task's transient physiological underpinnings by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left and right sides of the screen, separately. Particularly, we introduce and implement a novel technique named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional network with unprecedented temporal precision. We find that connectivity in the Bind condition is less integrated with the global network than in the Shape condition in occipital and frontal modules during the encoding period of the right screen condition. Using MDE we are able to discern driving effects in the occipital module between 100-140ms, coinciding with the P100 visually evoked potential, followed by a driving effect in the frontal module between 140-180ms, suggesting that the differences found constitute an information processing difference between these modules. This provides temporally precise information over a heterogeneous population in promising tasks for the detection of AD.
In text/plain format

Archived Files and Locations

application/pdf  549.3 kB
file_av2uwhsdrfbsnbuofucog5tc54
arxiv.org (repository)
web.archive.org (webarchive)
Read Archived PDF
Preserved and Accessible
Type  article
Stage   submitted
Date   2016-06-21
Version   v2
Language   en ?
arXiv  1606.02587v2
Work Entity
access all versions, variants, and formats of this works (eg, pre-prints)
Catalog Record
Revision: 0588b437-67c1-412b-9190-9e38f1253279
API URL: JSON